Wafer Bonding pp 417-450 | Cite as

Single-Crystal Lithium Niobate Films by Crystal Ion Slicing

  • M. Levy
  • A. M. Radojevic
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)


Lithium Niobate (LiNbO3) is extensively used in a variety of applications because of its strong electro-optic (EO), photorefractive and nonlinear optical characteristics. Its unique properties and environmental stability have resulted in its incorporation into photo-refractive gratings, holographic recording, and optical frequency conversion devices. In addition, it exhibits strong pyroelectric, piezoelectric and acousto-optic figures-of-merit, and has found wide applicability in acoustic wave transducers, delay lines and filters. In optics, LiNbO3 is widely used in optical modulators, lasers, parametric oscillators and amplifiers, polarization controllers, couplers, detectors, filters and switches, making it a key material in telecommunication systems. The development of optical telecommunications has in fact called forth the need for integrated photonic circuits with different devices and materials. Thus, a hybrid integration of single-crystal LiNbO3 in the form of thin, micrometer-thick films onto other, often non-compatible, platforms, such as silicon, is a very attractive prospect. In this chapter we explore the fabrication of such films by a layer-transfer technique called crystal ion slicing and examine the properties of the films obtained by this technology.


Rapid Thermal Annealing Lithium Niobate Sacrificial Layer Noise Equivalent Power Pyroelectric Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matthias BT, Remeika JP (1949), Phys Rev 76: 1886Google Scholar
  2. 2.
    Ballman AA (1965) Growth of piezoelectric and ferroelectric materials by Czochralski technique. J Am Ceram Soc 48: 112CrossRefGoogle Scholar
  3. 3.
    Carruthers JR, Peterson GE, Grasso MA, Bridenbaugh PM (1971) Nonstoichiometry and crystal growth of lithium niobate. J Appl Phys 42: 1846–1851ADSCrossRefGoogle Scholar
  4. 4.
    Kostritski SM, Sevastyanov OG (1997) Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals. Appl Phys B 65: 527–533ADSCrossRefGoogle Scholar
  5. 5.
    Fujiwara T, Takahashi M, Ohama M, Ikushima IJ, Furukawa Y, Kitamura K (1999) Comparison of electro-optic effect between stoichiometric and congruent LiNbO3. Electron Lett 35: 499–501CrossRefGoogle Scholar
  6. 6.
    Savage A (1966) Pyroelectricity and spontaneous polarization in LiNbO3. J Appl Phys 37: 3071–3072ADSCrossRefGoogle Scholar
  7. 7.
    Warner AW, Onoe M, Coquin GA (1967) Determination of elastic and piezoelectric constants for crystals in class (3m). J Acoust Soc Am 42: 1223–1231ADSCrossRefGoogle Scholar
  8. 8.
    Smith RT, Welsh FS (1971) Temperature dependence of elastic, piezoelectric, and electric constants of lithium tantalate and lithium niobate. J Appl Phys 42: 2219–2230ADSCrossRefGoogle Scholar
  9. 9.
    Weis RS, Gaylord TK (1985) Lithium niobate: summary of physical properties and crystal structure. Appl Phys A 37: 191–203ADSCrossRefGoogle Scholar
  10. 10.
    Kuz’minov Y-S (1999) Lithium niobate crystals, physical-chemical aspects and technology. Cambridge International Science Publishing, CambridgeGoogle Scholar
  11. 11.
    Edwards GJ, Lawrence M (1984) A temperature-dependent dispersion for congruently grown lithium niobate. Opt Quantum Electron 16: 373–375CrossRefGoogle Scholar
  12. 12.
    Dmitriev VG, Gurzadyan G, Nikogosyan DN (1996) Handbook of nonlinear optical crystals. 2nd edn, Springer, New YorkGoogle Scholar
  13. 13.
    Jundt DH (1997) Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Optics Lett 22: 1553–1555ADSCrossRefGoogle Scholar
  14. 14.
    Nye JF (1985) Physical properties of crystals. Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Kogelnik H (1990) Theory of optical waveguides. In: Tamir T (ed) Guided-wave optoelectronics. Springer, New YorkGoogle Scholar
  16. 16.
    Yariv A, Yeh P (1983) Optical waves in crystals. John Wiley & Sons, New YorkGoogle Scholar
  17. 17.
    Mendez A, Garcia-Cabanes A, Dieguez E, Cabrera JM (1999) Wavelength dependence of electro-optic coefficients in congruent quasi-stoichiometric LiNbO3. Electron Lett 35: 498–499CrossRefGoogle Scholar
  18. 18.
    Parameswaran K, Chou MH, Fejer MM, Brener I, Kawanishi S (2000) Waveguide frequency mixers for all-optical signal processing. In: Nonlinear Optics: Materials, Fundamentals, and Applications, Tech Dig, Trends in Optics and Photonics vol 46: 156–158Google Scholar
  19. 19.
    Boyd RW (1992), Nonlinear optics, Academic Press, San DiegoGoogle Scholar
  20. 20.
    Imeshev G, Arbore MA, Kasriel S, Fejer MM (2000) Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion. J Opt Soc Am B 17: 1420–1437ADSCrossRefGoogle Scholar
  21. 21.
    Ewbank MD, Rosker MJ, Bennett GL (1997) Frequency tuning a mid-infrared optical parametric oscillator by the electro-optic effect. J Opt Soc Am B 14: 666–671ADSCrossRefGoogle Scholar
  22. 22.
    Sakashita Y, Segawa HJ (1995) Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition. Appl Phys 77: 5995–5999Google Scholar
  23. 23.
    Hu GD, Xu JB, Wilson 1H, Cheung WY, Ke N, Wong SP (1999) Effects of a Bi4Ti3O12 buffer layer on SrBi2Ta2O9 thin films prepared by metalorganic decomposition. Appl Phys Lett 74: 3711–3713Google Scholar
  24. 24.
    Lansiaux X, Dogheche E, Remiens D, Guillox-viry M, Perrin A, Puterana R (2001) LiNbO3 thick films grown on sapphire by using a multistep sputtering process. J Appl Phys 90: 5274–5276ADSCrossRefGoogle Scholar
  25. 25.
    Veignant F, Gandais M, Aubert P, Garry G (1999) Structural evolution of lithium niobate deposited on sapphire (0001): from early islands to continuous films. J Cryst Growth 196: 141–143ADSCrossRefGoogle Scholar
  26. 26.
    Yoon JG, Kim K (1996) Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process. Appl Phys Lett 68: 2523–2545ADSCrossRefGoogle Scholar
  27. 27.
    Griffel G, Ruschin R, Croitoru N (1989) Linear electro-optic effect in sputtered polycrystalline LiNbO3. Appl Phys Lett 54: 1385–1387ADSCrossRefGoogle Scholar
  28. 28.
    Levy M, Osgood JRM, Liu R, Cross LE, Cargill, Ill GS, Kumar A, Bakhru H (1998) Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl Phys Lett 73: 2293–2295ADSCrossRefGoogle Scholar
  29. 29.
    Levy M, Osgood JRM, Kumar A, Bakhru H (1997) Epitaxial lift off of thin oxide layers: yttrium iron garnets onto GaAs. Appl Phys Lett 71: 2617–2619ADSCrossRefGoogle Scholar
  30. 30.
    Radojevic AM, Levy M, Osgood JRM, Kumar A, Bakhru H, Tian C, Evans C (1999) Large etch selectivity in epitaxial lift-off of thin films of LiNbO3. Appl Phys Lett 74: 3197–3199ADSCrossRefGoogle Scholar
  31. 31.
    Izuhara T, Levy M, Osgood JRM (2000) Direct wafer bonding and transfer of 10—lamthick magnetic garnet films onto semiconductor surfaces. Appl Phys Lett 76: 1261–1263ADSCrossRefGoogle Scholar
  32. 32.
    Levy M, Osgood JRM, Bhalla AS, Guo R, Cross LE, Kumar A, Sankaran S, Bakhru H (2000) Stress tuning in crystal ion slicing to form single-crystal potassium tantalate films Appl Phys Lett 77: 2124–2126Google Scholar
  33. 33.
    Izuhara T, Levy M, Osgood JRM, Reeves ME, Wang YG, Roy AN, Bakhru H (2002) Low-loss crystal ion sliced single-crystal potassium tantalate films. Appl Phys Lett 80: 1046–1048ADSCrossRefGoogle Scholar
  34. 34.
    Gheorma IL, Izuhara T, Osgood JRM, Roy AN, Bakhru H (2002) Single crystal barium titanate thin film fabrication by ion slicing. unpublished workGoogle Scholar
  35. 35.
    Levy M, Ghimire S, Bandyopadhyay AK, Hong YK, Moon K (2002) PZN-PT single crystal thin film monomorph actuator. Ferroelectric Lett 29: 29–40CrossRefGoogle Scholar
  36. 36.
    Spanier JE, Levy M, Herman IP, Osgood JRM, Bhalla AS (2001) Single-crystal, mesoscopic films of PZN-PT: formation and micro-Raman diagnosis. Appl Phys Lett 79: 1510–1512ADSCrossRefGoogle Scholar
  37. 37.
    Osgood JRM, Radojevic AM, Levy M, Bakhru H (2000) Slicing dielectrics with ions: a new processing technique for electronic and optoelectronic materials integration. In: Amer Inst Phys Proc of XVI Int Conf on the Applications of Accelerators in Research and Industry, CAARI 2000 in November, Denton, TXGoogle Scholar
  38. 38.
    Townsend PD (1990) An overview of ion-implanted optical waveguide profiles. Nucl Instr Meth Phys Res B 46: 18–25ADSCrossRefGoogle Scholar
  39. 39.
    Fluck D, Gunter P (2000) Second-harmonic generation in potassium niobate waveguides. IEEE J Sel Top Quantum Electron 6: 122–131CrossRefGoogle Scholar
  40. 40.
    Zhang L, Chandler PJ, Townsend PD, Thomas PA (1992) Helium ion implanted optical waveguides in KTiOPO4. Electron Lett 28: 650–651ADSCrossRefGoogle Scholar
  41. 41.
    Zhang L, Chandler Pi, Townsend PD (1991) Extra ‘strange’ modes in ion implanted lithium niobate waveguides. J Appl Phys 70: 1185–1187ADSCrossRefGoogle Scholar
  42. 42.
    Davis GM, Zhang L, Chandler PJ, Townsend PD (1993) Fabrication of planar optical waveguides in LiB3O5 by 2 MeV He+ ion implantation. IEEE Photon Technol Lett 5: 430–432ADSCrossRefGoogle Scholar
  43. 43.
    Lindhard J, Schraff M, Schiott HE (1963) Range concepts and heavy ion ranges. MatFys Medd Kensk Dan Vid Selsk 33: 1–42Google Scholar
  44. 44.
    Townsend PD, Chandler PJ, Zhang L (1994) Optical effects of ion implantation. In: Cambridge studies in modern optics 13, Cambridge University Press, CambridgeGoogle Scholar
  45. 45.
    Bruel M (1998) The history, physics, and applications of the Smart-Cut® process. Mat Res Soc Bull 23: 35–39Google Scholar
  46. 46.
    Radojevic AM, Levy M, Osgood JRM (2000) Zeroth-order half-wave plates of LiNbO3 for integrated optics applications. IEEE Photon Technol Lett 12: 1653–1655ADSCrossRefGoogle Scholar
  47. 47.
    Gotz G, Karge H (1983) Ion implantation in LiNbO3. Nucl Instr Meth Phys Res 209: 1079–1088CrossRefGoogle Scholar
  48. 48.
    Barry IE, Ross GW, Smith PGR, Eason RW (1998) Microstructuring of LiNbO3 using differential etch-rate between inverted and non-inverted ferroelectric domains. Mater Lett 37: 246–248CrossRefGoogle Scholar
  49. 49.
    Barry IE, Ross GW, Smith PGR, Eason RW (1999) Ridge waveguides in LiNbO3 fabricated by differential etching following spatially selective domain inversion. Appl Phys Lett 74: 1487–1489ADSCrossRefGoogle Scholar
  50. 50.
    Yablonovitch E, Gmitter T, Harbison JP, Bhat R (1987) Extreme selectivity in the liftoff of epitaxial GaAs films. Appl Phys Lett 51: 2222–2224ADSCrossRefGoogle Scholar
  51. 51.
    Ramadan TA, Levy M, Osgood JRM (2000) Electro-optic modulation in thin epitaixal lift off films of Z-cut LiNbO3. Appl Phys Lett 25: 1407–1409ADSCrossRefGoogle Scholar
  52. 52.
    Radojevic AM, Levy M, Kwak H, Osgood JRM (1999) Strong nonlinear response in 10— µm-thick films of epitaxial lift-off films of LiNbO3. Appl Phys Lett 75: 2888–2890ADSCrossRefGoogle Scholar
  53. 53.
    Weldon MK, Collot M, Chabal YJ, Venezia VC, Agarwal A, Haynes TE, Eaglesham DJ, Christman SB, Chaban EE (1998) Mechanism of silicon exfoliation induced by hydrogen/helium co-implantation. Appl Phys Lett 73: 3721–3723ADSCrossRefGoogle Scholar
  54. 54.
    Jackel J, Rice CE, Veselka JJ (1982) Proton-exchange for high-index waveguides in LiNbO3. Appl Phys Lett 47: 607–608ADSCrossRefGoogle Scholar
  55. 55.
    Bortz ML, Fejer MM (1991) Annealed proton-exchanged LiNbO3 waveguides. Optics Lett 16: 1844–1846ADSCrossRefGoogle Scholar
  56. 56.
    Radojevic AM, Osgood JRM, Roy NA, Bakhru H (2002) Pre-patterned optical circuits in single-crystal thin-films of LiNbO3. IEEE Photon Tech Lett 14: 322–325ADSCrossRefGoogle Scholar
  57. 57.
    Izuhara T Radojevic AM (2001), unpublished workGoogle Scholar
  58. 58.
    Albaugh KB, Rasmussen DH (1992) Rate processes during anodic bonding. J Am Ceram Soc 75: 2644–2648CrossRefGoogle Scholar
  59. 59.
    Fujita J, Gerhardt R, Eldada LA (2002) Hybrid integrated optical isolators and circulators. In: Opto-electronic interconnects, integrated circuits, and packaging. SPIE Proc 4652: 4652–08Google Scholar
  60. 60.
    Radojevic AM, Fujita J, Eldada LA (2002) Hybrid integrated polarization mode converters and low voltage electro-optic modulators using crystal-ion sliced LiNbO3 films. In: Optoelectronic interconnects, integrated circuits, and packaging. SPIE Proc 4652: 4652–03Google Scholar
  61. 61.
    Batterman BW (1964) Dynamical diffraction of X rays by perfect crystals. Rev Modern Phys 36: 681–717MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Suchoski PG, Findakly TK, Leonberger FJ (1988) Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation. Optics Lett 13: 10501052Google Scholar
  63. 63.
    Ulrich R, Torge R (1973) Measurement of thin film parameters with a prism coupler. Appl Opt 12: 2901–2908ADSCrossRefGoogle Scholar
  64. 64.
    Radojevic AM, Levy M, Osgood Jr, Kumar A, Bakhru H (2000) Zero-order half-wave plates of lithium niobate for integrated optics applications in the 155— gm waveband in Trends in optics and photonics. Int Photon Res 45: 271–273Google Scholar
  65. 65.
    Nishihara H, Harn M, Suhara T (1998) Optical integrated circuits. McGraw-Hill, New YorkGoogle Scholar
  66. 66.
    Radojevic AM, Levy M, Osgood JrRM, Jundt DH, Kumar A, Bakhru H (2000), Second-order optical nonlinearity of 10— gm-thick periodically poled LiNbO3 films. Optics Lett 25: 1034–1036ADSCrossRefGoogle Scholar
  67. 67.
    Fejer MM, Magel GA, Jundt DH, Byer RL (1992) Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J Quantum Electron 28: 2631–2654ADSCrossRefGoogle Scholar
  68. 68.
    Lenz G, Tamura K, Haus HA, Ippen EP (1995) All solid-state femtosecond source at 1551.1m. Optics Lett 20: 1289–1291ADSCrossRefGoogle Scholar
  69. 69.
    Robertson EE, Eason RW, Yokoo Y, Chandler PJ (1997) Photorefractive damage removal in annealed-proton-exchanged LiNbO3 channel waveguides. Appl Phys Lett 70: 2094–2096ADSCrossRefGoogle Scholar
  70. 70.
    Inoue Y, Ohmori Y, Kawachi M, Ando S, Sawada T, Takahashi H (1994) Polarization mode converter with polyamide half-wave plate in silica-based planar lightwave circuits. IEEE Photon Technol Lett 6: 626–628ADSCrossRefGoogle Scholar
  71. 71.
    Blackburn H, Wright HC (1970) Thermal analysis of pyroelectric detectors. Infrared Phys 10: 191–193ADSCrossRefGoogle Scholar
  72. 72.
    Lehman JH, Radojevic AM, Osgood JrRM, Levy M, Pannell CN (2000) Fabrication and evaluation of a freestanding pyroelectric detector made from single-crystal LiNbO3 film. Optics Lett 25: 1657–1659ADSCrossRefGoogle Scholar
  73. 73.
    Lehman JH, Radojevic AM, Osgood JrRM (2001) Domain-engineered thin-film LiNbO3 pyroelectric-bicell optical detector. IEEE Photon Tech Lett 13: 851–853ADSCrossRefGoogle Scholar
  74. 74.
    Phelan RJ, Cook AR (1973) Electrically calibrated pyroelectric optical-radiation detector. Appl Opt 12: 2494–2500ADSCrossRefGoogle Scholar
  75. 75.
    Lehman JH, Aust JA (1988) Bicell pyroelectric optical detector made from a single LiNbO3 domain-reversed electret. Appl Opt 37: 4210–4212ADSCrossRefGoogle Scholar
  76. 76.
    Meyers LE, Eckardt RC, Fejer MM, Byer RL, Bosenberg WR, Pierce JW (1995) Quasiphase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J Opt Soc Am B 12: 2102–2116ADSCrossRefGoogle Scholar
  77. 77.
    Lehman JH, Eppledauer G, Aust JA, Ratz M (1999) Domain-engineered pyroelectric radiometer. Appl Opt 38: 7047–7055ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Levy
  • A. M. Radojevic

There are no affiliations available

Personalised recommendations