Wafer Bonding pp 377-415 | Cite as

Layer Transfer by Bonding and Laser Lift-Off

  • T. D. Sands
  • W. S. Wong
  • N. W. Cheung
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)


Monolithic integration by sequential deposition, lithographic patterning, and etching of metal, dielectric and semiconductor thin films has been the dominant manufacturing scheme throughout the history of the integrated circuit. This manufacturing paradigm has been adapted to the fabrication of Micro-Electro-Mechanical Systems (MEMS), active-matrix displays, read/write heads for disk drives and optoelectronic devices. Although this single-substrate approach is scalable and inherently cost-effective, there are some materials systems, functionalities and device designs that cannot be realized in this manner. The ideal growth substrate for a specific thin-film heterostructure may not be the ideal substrate from the standpoint of heat extraction, mechanical properties, thermomechanical behavior, optical transparency, electrical conductivity or chemical compatibility. In these cases, the growth substrate must be removed, although it is not always practical to do so by mechanical or chemical means alone. In the longer term, it may be desirable to integrate thin-film heterostructures grown separately on several growth substrates onto a single platform. As IC scaling approaches an era of saturation, the focus is gradually turning to the challenge of intimately integrating a broad spectrum of high-performance materials to enhance the functionality of microsystems. The ability to transfer thin-film heterostructures from one substrate to another is central to both advanced packaging and heterogeneous integration.


Sapphire Substrate Layer Transfer Threshold Fluence Entrance Surface Thermal Diffusion Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kelly MK, Ambacher O, Dimitrov R, Handschuh R, Stutzmann M (1997) Optical Process for Liftoff of Group III-Nitride Films. phys stat sol (a) 159: R3–4Google Scholar
  2. 2.
    Wong WS, Sands T, Cheung NC (1998) Damage-free Separation of GaN Thin Films from Sapphire Substrates. Appl Phys Lett 72: 599–601ADSCrossRefGoogle Scholar
  3. 3.
    Wong WS, Cho Y, Weber ER, Sands T, Yu KM, Wengrow AB, Cheung NC (1999) Structural and Optical Quality of GaN/metal/Si Heterostructures Fabricated by Excimer Laser Lift-off. Appl Phys Lett 75: 1887–89ADSCrossRefGoogle Scholar
  4. 4.
    Wong WS, Sands T, Cheung NC, Kneissl M, Bour DP, Mei P, Romano LT, Johnson NM (1999) Fabrication of Thin-film InGaN Light-Emitting Diode Membranes by Laser Lift-off. Appl Phys Lett 75: 1360–62ADSCrossRefGoogle Scholar
  5. 5.
    Wong WS, Sands T, Cheung N, Kneissl M, Bour D, Mei P, Romano L, Johnson N (1999) Ubiquitous Blue LEDs: The Integration of GaN Thin Films with Dissimilar Substrate Materials by Wafer Bonding and Laser Lift-off. Compound Semicond 5: 5456Google Scholar
  6. 6.
    Wong WS, Wengrow AB, Cho Y, Salleo A, Quitoriano NJ, Cheung NC, Sands T (1999) Integration of GaN Thin Films with Dissimilar Substrate Materials by Pd—In Metal Bonding and Laser Lift-off. J Electron Mater 28: 1409–13ADSCrossRefGoogle Scholar
  7. 7.
    Wong WS, Kneissl M, Mei P, Treat DW, Teepe M, Johnson NM (2000A) The Integration of In,,Ga1_xN Multiple-Quantum-Well Laser Diodes with Copper Substrates by Laser Lift-off. Jpn J Appl Phys 39:L1203–05Google Scholar
  8. 8.
    Wong WS, Sands T, Cheung NW, Kneissl M, Bour DP, Mei P, Romano LT, Johnson NM (2000B) InxGa1_xN Light Emitting Diodes on Si Substrates Fabricated by Pd—In Metal Bonding and Laser Lift-off. Appl Phys Lett 77:2822–24Google Scholar
  9. 9.
    Luo ZS, Cho Y, Loryuenyong V, Sands T, Cheung NW, Yoo MC (2002) Enhancement of ( In,Ga)N Light-Emitting Diode Performance by Laser Lift-off and Transfer from Sapphire to Silicon. IEEE Photonics Technol Lett 14: 1400–02Google Scholar
  10. 10.
    Wong WS, Kneissl M, Mei P, Treat DW, Teepe M, Johnson NM (2001A) Continuous-wave InGaN Multiple-Quantum-Well Laser Diodes on Copper Substrates. Appl Phys Lett 78: 1198–1200Google Scholar
  11. 11.
    Yang VK, Groenert ME, Taraschi G, Leitz CW, Pitera AJ, Currie MT, Cheng Z, Fitzgerald EA (2002) Monolithic Integration of III—V optical interconnects on Si using SiGe virtual substrates. J Mater Sci, Mater Electron 13: 377–80Google Scholar
  12. 12.
    Yablonovitch E, Gmitter T, Harbison JP, Bhat R (1987) Extreme Selectivity in the Liftoff of Epitaxial GaAs Films, Appl Phys Lett 51: 2222–24ADSCrossRefGoogle Scholar
  13. 13.
    Kish FA, Steranka FM, DeFevere DC, Vanderwater DA, Park KG, Kuo CP, Osentowski TD, Peanasky MJ, Yu JG, Fletcher RM, Steigerwald DA, Craford MG, Robbins VM (1994) Very High-Efficiency Semiconductor Wafer-Bonded Transparent-Substrate (AlxGa1_x)0.5In0.5P/GaP Light-Emitting Diodes. Appl Phys Lett 64: 2839–41ADSCrossRefGoogle Scholar
  14. 14.
    Guha S, Bajorczuk NA (1998A) Ultraviolet and Violet GaN Light Emitting Diodes on Silicon. Appl Phys Lett 72: 415–17Google Scholar
  15. 15.
    Guha S, Bajorczuk NA (1998B) Multicolored Light Emitters on Silicon Substrates. Appl Phys Lett 73: 1487–89Google Scholar
  16. 16.
    Luryi S (1992) How to Make an Ideal HBT and Sell It Too. IEEE Trans Electron Devices 41. 2241–47ADSCrossRefGoogle Scholar
  17. 17.
    Chediak JA, Luo ZS, Seo J, Cheung NC, Lee LP, Sands TD (2003) Hybrid Integration of CdS Filters with GaN LEDs for Biophotonic Chips. Proc. Of the Annual IEEE Int MEMS Conf. (MEMS-2003): 323–326Google Scholar
  18. 18.
    Bohandy J, Kim BF, Adrian FJ (1986) Metal Deposition from a Supported Metal Film using an Excimer Laser. J Appl Phys 60: 1538–39ADSCrossRefGoogle Scholar
  19. 19.
    Adrian FJ, Bohandy J, Kim BF, Jette AN, Thompson P (1987) A Study of the Mechanism of Metal Deposition by the Laser-induced Forward Transfer Process. J Vac Sci Technol B5: 1490–1494ADSCrossRefGoogle Scholar
  20. 20.
    Fogarassy E, Fuchs C, Perriere J (1990) Depot de Films Supraconducteurs a Haute Te par Transfert Induit par Laser. Le Vide, les Couches Minces 252: 166–67Google Scholar
  21. 21.
    Toet D, Thompson MO, Smith PM, Sigmon TW (1999) Laser-assisted Transfer of Silicon by Explosive Hydrogen Release. Appl Phys Lett 74: 2170–72ADSCrossRefGoogle Scholar
  22. 22.
    Toet D, Smith PM, Sigmon TW (2000) Experimental and Numerical Investigations of a Hydrogen-assisted Laser-induced Materials Transfer Procedure. J Appl Phys 87: 353746Google Scholar
  23. 23.
    Toet D, Thompson MO, Smith PM, Carey PG, Sigmon TW (1999) Thin-film Transistors Fabricated in Printed Silicon. Jpn J Appl Phys 38: L1149–52ADSCrossRefGoogle Scholar
  24. 24.
    Shimoda T, Inoue S (1999) Surface Free Technology by Laser Annealing (SUFTLA). IEDM Tech Digest: 289–292Google Scholar
  25. 25.
    Kelly MK, Ambacher O, Dalheimer B, Groos G, Dimitrov R, Angerer H, Stutzmann M (1996) Optical Patterning of GaN Films. Appl Phys Lett 69: 1749–51ADSCrossRefGoogle Scholar
  26. 26.
    Wong WS, Schloss LF, Sudhir GS, Linder BP, Yu KM, Weber E, Sands T, Cheung NW (1997) Pulsed Excimer Laser Processing of A1N/GaN Thin Films. Mater Res Soc Symp Proc 449: 1011–16CrossRefGoogle Scholar
  27. 27.
    Cheung NW, Sands TD, Wong WS (2000) U.S. Patent No. 6,071,795; Separation of Thin Films from Transparent Substrates by Selective Optical Processing, issued June 6th, 2000Google Scholar
  28. 28.
    Cheung NW, Sands TD, Wong WS (2002) U.S. Patent No. 6,420,242; Separation of Thin Films from Transparent Substrates by Selective Optical Processing, issued July 17th, 2002Google Scholar
  29. 29.
    Duley WW (1996) UV Lasers: Effects and Applications in Materials Science, Cambridge University Press, Chap 6CrossRefGoogle Scholar
  30. 30.
    Wong WS (1999) Integration of GaN Films with Dissimilar Substrate Materials by Wafer Bonding and Laser Lift-off, Ph.D Thesis, University of California, BerkeleyGoogle Scholar
  31. 31.
    Kolsky H (1952) Stress Waves in Solids, Dover Publications, New York: 31–34Google Scholar
  32. 32.
    Tavernier PR, Clarke DR (2001) Mechanics of Laser-assisted Debonding of Films, J Appl Phys 89: 1527–36ADSCrossRefGoogle Scholar
  33. 33.
    Loryuenyong V (2002) Photo-Polymer Wafer Bonding for Transfer of GaN Heterostructures and Devices from Sapphire to Dissimilar Substrates. MS Report, University of California Berkeley, Dec. 2002Google Scholar
  34. 34.
    Hutchinson JW, Suo Z (1992) Mixed-mode Cracking in Layered Materials. Adv Appl Mech 29: 63–191zbMATHCrossRefGoogle Scholar
  35. 35.
    Cho Y, Schroeder JL, Sands T, Cheung NW, Stach E (2003) unpublishedGoogle Scholar
  36. 36.
    Polian A, Grimsditch M, Grzegory I (1996) Elastic Constants of Gallium Nitride. J Appl Phys 79: 3343–44ADSCrossRefGoogle Scholar
  37. 37.
    Bernstein L, Bartholomew H (1966) Applications of Solid-Liquid Interdiffusion ( SLID) Bonding in Integrated-Circuit Fabrication. Trans AIME 236: 405–12Google Scholar
  38. 38.
    Cheung NW, Sands TD, Wong WS (2002) U.S. Patent No. 6,335,263; Method of Forming a Low-Temperature Metal Bond for Use in the Transfer of Bulk and Thin Film Materials, issued January 1st, 2002Google Scholar
  39. 39.
    Häussermann U, Elding-Pontén M, Svensson C, Lidin S (1998) Compounds with the Ir3Ge7 Structure Type: Interpenetrating Frameworks with Flexible Bonding Properties. Chem Eur J 4: 1007–15Google Scholar
  40. 40.
    Quitoriano N, Wong WS, Tsakalakos L, Cho Y, Sands T (2001) Kinetics of the Pd/In Thin-film Bilayer Reaction: Implications for Transient-Liquid-Phase Wafer Bonding. J Electron Mater 30: 1471–5Google Scholar
  41. 41.
    Studnitzky T, Schmid-Fetzer R (2002) Diffusion Soldering for Stable High-Temperature Thin-Film Bonds. JOM—Journal of the Minerals Metals and Mater Soc 54: 58–63ADSCrossRefGoogle Scholar
  42. 42.
    Niklaus F, Enoksson P, Kälvesten E, Stemme G (2000) Void-free Full Wafer Adhesive Bonding, Proceedings IEEE 13th Annual Int Conf on Micro Electro Mechanical Systems (Cat. No.00CH36308), IEEE Piscataway, NJ, USA, pp. 247–52CrossRefGoogle Scholar
  43. 43.
    Perlin P, Suski T, Teissyre H, Leszczynski M, Crzegory I, Jun J, Porowski S, Boguslawski P, Bernholc J, Cherwin JC, Polian A, Moustakas TD (1995) Towards the Identification of the Dominant Donor in GaN. Phys Rev Lett 75: 296–99.ADSCrossRefGoogle Scholar
  44. 44.
    Karpinski J, Jun J, Porowski S (1984) Equilibrium Pressure of N2 over GaN and High Pressure Solution Growth of GaN. J Cryst Growth 66:1— 10Google Scholar
  45. 45.
    Wierer JJ, Steigerwald DA, Krames MR, O’Shea JJ, Ludowise MJ, Christenson G, Shen YC, Lowery C, Martin PS, Subramanya S, Götz W, Gardner NF, Kern RS, Stockman SA (2001) High-power A1GaInN Flip-chip Light-emitting Diodes. Appl Phys Lett 78: 3379–3381ADSCrossRefGoogle Scholar
  46. 46.
    Schroeder JL (2002) Assembly of AIN Bimorph Thin-film Actuators by Pulsed Laser Lift-off, MS Thesis, University of California Berkeley, Dec. 2002Google Scholar
  47. 47.
    Stach EA (2001) unpublished private communicationGoogle Scholar
  48. 48.
    Tavernier PR, Verghese PM, Clarke DR (1999) Photoluminescence from Laser Assisted Debonded Epitaxial GaN and ZnO Films. Appl Phys Lett 74: 2678–80ADSCrossRefGoogle Scholar
  49. 49.
    Tsakalakos L, Sands T (2000) Epitaxial Ferroelectric (Pb,La)(Zr,Ti)03 Thin Films on Stainless Steel by Excimer Laser Liftoff. Appl Phys Lett: 227–29Google Scholar
  50. 50.
    Tsakalakos L (1999) unpublished researchGoogle Scholar
  51. 51.
    Loryuenyong V, Hwang D, Cheung NC, Sands T, Grigoropoulos C (2002) unpublished researchGoogle Scholar
  52. 52.
    Dougherty GM (2000) private communicationGoogle Scholar
  53. 53.
    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kikoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K (1998) Violet InGaN/GaN/AIGaN-Based Laser Diodes with an Output Power of 420 mW. Jpn J Appl Phys, Pt. 2, 37: L627–29Google Scholar
  54. 54.
    Grzegory I, Krukowski S (1991) Synthesis and Crystal Growth of AJIIBv Semiconducting Compounds under High Pressure of Nitrogen. Physica Scripta Vol T 39: 242–49ADSCrossRefGoogle Scholar
  55. 55.
    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kikoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K (1998A) Continuous-wave Operation of InGaN/GaN/A1GaN-based Laser Diodes Grown on GaN Substrates. Appl Phys Lett 72: 2014–16Google Scholar
  56. 56.
    Melnik Y, Nikolaev A, Nikitina I, Vassilevski H, Dmitriev V (1998) Properties of Free-Standing GaN Bulk Crystals Grown by HVPE. Mater Res Soc Symp Proc 482: 269–74CrossRefGoogle Scholar
  57. 57.
    Detchprohm T, Amano H, Hiramatsu K, Akasaki I (1993) The Growth of Thick GaN Film on Sapphire Substrate by using ZnO Buffer Layer. J Cryst Growth 128: 384–90ADSCrossRefGoogle Scholar
  58. 58.
    Kelly MK, Vaudo RP, Phanse VM, Görgens L, Ambacher O, Stutzmann M (1999) Large Free-standing GaN Substrates by Hydride Vapor Phase Epitaxy and Laser-induced Liftoff. Jpn J Appl Phys 38: L217–19ADSCrossRefGoogle Scholar
  59. 59.
    Park SS, Park I-W, Choh SH (2000) Free-standing GaN Substrates by Hydride Vapor Phase Epitaxy. Jpn J Appl Phys 39: L1141–42ADSCrossRefGoogle Scholar
  60. 60.
    Park SS, Park I-W, Choh SH (2001) Bowing of GaN Substrates by Hydride Vapor Phase Epitaxy. Proc Intl Workshop on Nitride Semiconductors, Inst Pure and Appl Phys, Tokyo, Japan, pp. 60–63Google Scholar
  61. 61.
    Stach EA, Kelsch M, Nelson EC, Wong WS, Sands T, Cheung NW (2000) Structural and Chemical Characterization of Free-standing GaN Films Separated from Sapphire Substrates by Laser Lift-off. Appl Phys Lett 77: 1819–21ADSCrossRefGoogle Scholar
  62. 62.
    Miskys CR, Kelly MK, Ambacher O, Martinez-Criado G, Stutzmann M (2000) GaN Homoepitaxy by Metalorganic Chemical-vapor Deposition on Free-standing GaN Substrates. Appl Phys Lett 77: 1858–60ADSCrossRefGoogle Scholar
  63. 63.
    Oh E, Lee SK, Park SS, Lee KY, Song IJ, Han JY (2001) Optical Properties of GaN Grown by Hydride Vapor-phase Epitaxy. Appl Phys Lett 78: 273–5ADSCrossRefGoogle Scholar
  64. 64.
    Reshchikov MA, Huang D, Yun F, He L, Morkoç H, Reynolds DC, Park SS, Lee KY (2001) Photoluminescence of GaN Grown by Molecular-beam Epitaxy on a Freestanding GaN Template. Appl Phys Lett 79: 3779–81ADSCrossRefGoogle Scholar
  65. 65.
    Song YK, Zhou H, Diagne M, Ozden I, Vertikov A, Nurmikko AV, Carter-Coman C, Kern RS, Kish FA, Krames MR (1999) A Vertical Cavity InGaN Quantum Well Light Emitting Heterostructure. Appl Phys Lett 74: 3441–3ADSCrossRefGoogle Scholar
  66. 66.
    Martin RW, Edwards PR, Kim H-S, Kim K-S, Kim T, Watson IM, Dawson MD, Cho Y, Sands T, Cheung NW (2001) Optical Spectroscopy of GaN Microcavities with Thickness Controlled Using a Plasma Etch-back. Appl Phys Lett 79: 3029–31ADSCrossRefGoogle Scholar
  67. 67.
    Edwards PR, Martin RW, Kim H-S, Kim K-S, Cho Y, Watson IM, Sands T, Cheung NW, Dawson MD (2001) InGaN/GaN Quantum Well Microcavities Formed by Laser Lift-off and Plasma Etching. phys stat sol (b) 228: 91–94Google Scholar
  68. 68.
    Martin RW, Kim H-S, Cho Y, Edwards PR, Watson IM, Sands T, Cheung NW, Dawson MD (2002) GaN Microcavities formed by Laser Lift-off and Plasma Etching. Mater Sci Eng B, Solid State Mater Adv Technol 93: 98–101Google Scholar
  69. 69.
    Song YK, Zhou H, Diagne M, Nurmikko AV, Schneider RP Jr, Kuo CP, Krames MR, Kern RS, Carter-Coman C, Kish FA (2000) A Quasicontinuous Wave, Optically-pumped Violet Vertical Cavity Surface Emitting Laser. Appl Phys Lett 76: 1662–4Google Scholar
  70. 70.
    Luo ZS (2003) private communicationGoogle Scholar
  71. 71.
    Wong WS, Kneissl M, Treat D, Teepe M, Miyashita N, Johnson NM (2001) Integration of InGaN-based Optoelectronics with Dissimilar Substrates by Wafer Bonding and Laser Lift-off. Proc Mater Res Soc Symp 681E: 16. 1Google Scholar
  72. 72.
    Guha S, Gupta A, Bajorczuk NA, Karasinski J (2000) Transplanted Si Films on Arbitrary Substrates Using GaN Underlayers. Appl Phys Lett 76: 1264–66.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • T. D. Sands
  • W. S. Wong
  • N. W. Cheung

There are no affiliations available

Personalised recommendations