Advertisement

Wafer Bonding pp 359-376 | Cite as

High-Density Hybrid Integration of III–V Compound Optoelectronics with Silicon Integrated Circuits

  • E. D. Kyriakis-Bitzaros
  • G. Halkias
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)

Abstract

High-density hybrid integration of III–V compound optoelectronics (0E) with Complementary Metal Oxide Semiconductor (CMOS) Integrated Circuits (ICs) is emerging as a technology able to provide the features and performance required by the next generation of high functionality information processing subsystems [1–3]. Though the performance potential of III–V OE is widely recognized, high-density co-integration with CMOS and low-cost manufacturability remain the key issues, which will ultimately determine the potential of this technology for market penetration. A variety of approaches is currently proposed to achieve the goal of high-density III–V 0E-CMOS integration. Since there is not a single prevalent technology for the embodiment of such high-density OE subsystems, a comprehensive presentation of the state-of-the-art hybrid integration technologies of III–V OEs with CMOS is necessary to assess the potential of each approach.

Keywords

GaAs Substrate Complementary Metal Oxide Semiconductor Wafer Bonding IEEE Photonic Technology Letter GaAs Wafer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krishnamoorthy AV, Miller DAB (1996) Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap. IEEE J of Selected Topics in Quantum Electronics 2: 55–76CrossRefGoogle Scholar
  2. 2.
    Miller DAB (1998) Dense two-dimensional integration of optoelectronics and electronics for interconnections. In: Husain A, Fallahi M (eds) Heterogeneous integration: Systems on a chip, Critical Reviews of Optical Engineering, Vol CR70, SPIE Optical Engineering Press, Bellingham, WA, pp 80–109Google Scholar
  3. 3.
    Jokerst NM, Brooke MA, Laskar J, Wills DS, Brown AS, Vrazel M, Jung S, Joo Y, Chang JJ (2000) Microsystem optoelectronic integration for mixed multisignal systems. IEEE J of Selected Topics in Quantum Electronics 6: 1231–1239CrossRefGoogle Scholar
  4. 4.
    Flipchip (2002) Internet site: www.flipchips.com Google Scholar
  5. 5.
    Pu R, Duan C, Wilmsen CW (1999) Hybrid integration of VCSELs to CMOS integrated circuits IEEE J. of Selected Topics in Quantum Electronics 5: 201–208Google Scholar
  6. 6.
    Krishnamoorthy AV, Goossen KW (1997) Progress in optoelectronic-VLSI smart pixel technology based on GaAs/AlGaAs MQW modulators. Int Journal of Optoelectronics 11: 181–198Google Scholar
  7. 7.
    Plant DV, Venditti MB, Laprise E, Faucher J, Ravazi K, Chateauneuf M, Kirk AG, Ahearn JS (2001) 256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS IEEE J of Lightwave Technology 19: 1093–1103Google Scholar
  8. 8.
    Krishnamoorthy AV, Goossen KW (1998) Optoelectronic-VLSI: Photonics integrated with VLSI circuits. IEEE J of Selected Topics in Quantum Electronics 4: 899–912Google Scholar
  9. 9.
    Krishnamoorty AV, Goosen KW, Chirovsky LMF, Rozier RG, Chandramani P, Hobson WS, Hui SP, Lopata J, Walker JA, D’Asaro LA (2000) 16X16 VCSEL array flip-chip bonded to CMOS VLSI circuit. IEEE Photonic Technology Letters 12: 1073 1075Google Scholar
  10. 10.
    Andreou AG, Kalayjian ZK, Apsel A, Pouliquen PO, Athale RA, Simonis G, Reedy R (2001) Silicon on sapphire CMOS for optoelectronic microsystems. IEEE Circuits and Systems Magazine 1: 22–30CrossRefGoogle Scholar
  11. 11.
    Peregrine (2002) Internet site: www.peregrine-semi.com Google Scholar
  12. 12.
    Yablonovich E, Gmitter T, Harbison JP, Bhat R (1987) Extreme selectivity in the liftoff of epitaxial GaAs films. Applied Physics Letters, 51: 2222–2224.Google Scholar
  13. 13.
    Yablonovich E, Kapon E, Gmitter TJ, Yun CP, Bhat R, (1989) Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates. IEEE Photonics Technology Letters 1: 41–42ADSCrossRefGoogle Scholar
  14. 14.
    Maeda J, Sasaki Y, Dietz N, Shibahara K, Yokohama S, Miyazaki S, Hirose M, (1997) High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits. Japan Journal of Applied Physics 36 (1 3B): 1554–1557.ADSCrossRefGoogle Scholar
  15. 15.
    Jokerst NM, Brooke MA, Vendier O, Wilkinson S, Fike S, Lee M, Twyford E, Cross J, Buchanan B, Wills S (1996) Thin-film multimaterial optoelectronic integrated circuits. IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B 19: 97–106Google Scholar
  16. 16.
    Camperi-Ginestet C, Hagris M, Jokerst N, Allen M (1991) Alignable epitaxial liftoff of GaAs materials with selective deposition using polyimide diaphragms. IEEE Photonics Technology Letters 3: 1123–1126ADSCrossRefGoogle Scholar
  17. 17.
    Mathine DL (1997) The Integration of III—V Optoelectronics with Silicon Circuitry. IEEE J. of Selected Topics in Quantum Electronics 3: 952–959CrossRefGoogle Scholar
  18. 18.
    Mathine DL, Droopad R, Maracas GN (1997) A vertical-cavity surface-emitting laser appliqued to a 0.8 pm NMOS driver. IEEE Photonics Technology Letters 9: 869–871ADSCrossRefGoogle Scholar
  19. 19.
    Wheeler CB, Mathine DL, Johnson SR, Maracas GN, Allee DR (1997) Selectively oxidized GaAs MESFET’s transferred to a Si substrate. IEEE Electron Device Letters 18: 138–140ADSCrossRefGoogle Scholar
  20. 20.
    Marshall ED, Zhang B, Wang LC, Jiao PF, Chen WX, Sawada T, Lau SS, Kavanagh KL, Kuech TF (1987) Nonalloyed ohmic contacts to n-GaAs by solid-phase epitaxy of Ge. Journal of Applied Physics 62: 942–947ADSCrossRefGoogle Scholar
  21. 21.
    Palmstrom CJ, Schwartz SA, Yablonovitch E, Pharbison J, Schwartz CL, Florez LT, Gmitter TJ, Marshall ED, Lau SS (1990) Ge redistribution in solid-phase Ge/Pd/GaAs ohmic contact formation. Journal of Applied Physics 67: 334–339ADSCrossRefGoogle Scholar
  22. 22.
    Georgakilas A, Alexe M, Deligeorgis G, Cengher D, Aperathitis E, Androulidaki M, Gallis S, Hatzopoulos Z, Halkias G (2001) III—V material and device aspects for the monolithic integration of GaAs devices on Si using GaAs/Si low temperature wafer bonding. CAS 2001 Proceedings, IEEE, Piscataway, NJ, IEEE Catalog. No. 01TH8547, pp 239–244Google Scholar
  23. 23.
    Georgakilas A, Deligeorgis G, Aperathitis E, Cengher D, Hatzopoulos Z, Alexe M, Dragoi V, Gosele U, Kyriakis-Bitzaros ED, Minoglou K, Halkias G (2002) Wafer-scale integration of GaAs optoelectronic devices with standard Si integrated circuits using a low-temperature bonding procedure. Applied Physics Letters 81: 5099–5101ADSCrossRefGoogle Scholar
  24. 24.
    Matsuo S, Nakahara T, Tateno K, Kurokawa T (1996) Novel technology for hybrid integration of photonic and electronic circuits. IEEE Photonics Technology Letters 8: 1507–1509ADSCrossRefGoogle Scholar
  25. 25.
    Nakahara T, Tsuda H, Tateno K, Matsuo S, Kurokawa T (1999) Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs p-i-n photodiode/CMOS receiver. IEEE J. of Selected Topics in Quantum Electronics 5: 209–216CrossRefGoogle Scholar
  26. 26.
    Yeh HJJ, Smith JS, (1994) Fluidic self-assembly for the integration of GaAs light-emitting diodes an Si substrates. IEEE Photonics Technology Letters, 6: 706–708.ADSCrossRefGoogle Scholar
  27. 27.
    Tu JK, Talghader JJ, Hadley MA, Smith JS, (1995) Fluidic self-assembly of InGaAs vertical cavity surface-emitting lasers onto silicon. IEE Electronics Letters 31: 14481449Google Scholar
  28. 28.
    Talghader JJ, Tu JK, Smith JS (1995) Integration of fluidically self-assembled optoelectronic devices using a silicon-based process. IEEE Photonics Technology Letters 7: 1321–1323ADSCrossRefGoogle Scholar
  29. 29.
    Esener SC, Hartmann D, Heller MJ, Cable JM (1998) DNA-assisted micro-assembly: A heterogeneous integration technology for optoelectronics. In: Husain A, Fallahi M (eds) Heterogeneous integration: systems on a chip, Critical Reviews of Optical Engineering, Vol CR70, SPIE Optical Engineering Press, Bellingham, WA, pp 113–140Google Scholar
  30. 30.
    Edman CF, Swint RB, Gurtner C, Formosa RE, Roh SD, Lee KE, Swanson PD, Ackley DE, Coleman JJ, Heller MJ (2000) Electric field directed assembly of an InGaAs LED onto silicon circuitry. IEEE Photonics Technology Letters, 12: 1198–1200ADSCrossRefGoogle Scholar
  31. 31.
    Fonstad CG (2001) Magnetically-assisted statistical assembly: A new heterogeneous integration technique. Proc of the Singapore-MIT Alliance Symposium. Internet document:http://web.mit. edu/sma/About/SpecialEvents/Symposium/A MMNS/M ASA.pdfGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. D. Kyriakis-Bitzaros
  • G. Halkias

There are no affiliations available

Personalised recommendations