Skip to main content

Direct Bonding, Fusion Bonding, Anodic Bonding, Wafer Bonding: A Historical Patent Picture of the Worldwide Moving Front of the State-of-the-Art of Contact Bonding

  • Chapter
Wafer Bonding

Part of the book series: Springer Series in MATERIALS SCIENCE ((SSMATERIALS,volume 75))

  • 1113 Accesses

Abstract

Patents tell their own (hi)story, which is not always covered by scientific literature. They basically represent the moving front of the state of the art. Direct (glue-less) bonding, which occurs under ambient conditions, has a longer history (from the 19th century) than its patented counterpart (from the second quarter of the 20th century); fusion (wafer) bonding dates mainly from after World War II. Contact bonding covers all types of bonding, realized by the face-to-face contacting of two bodies under various conditions (e.g. vacuum) and after-treatments (e.g. annealing).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas TR (1999) Rough Surfaces. Imperial College Press, London

    Google Scholar 

  2. Sir Isaac Newton (1642–1727, in the New Style or Gregorian calendar, 1643–1727, in the Old Style or Julian calendar). This discovery is treated in his book: Opticks, or, a treatise of the reflections, refractions, inflections and colours, the fourth edition corrected, London W. Immys, MDCCXXX; further: Newton, Opticks, etc., a reprint from the fourth edition with a foreword by Prof. A. Einstein, Nobel laureate, and an introduction by Prof. E.T. Whittaker, Fellow of the Royal Society; McGraw-Hill, New York, 1931

    Google Scholar 

  3. Poisson S-D (1781–1840), Note sur le phénomène des anneaux colorés; to be found in H. de Senarmont, E. Verdet, L. Fresnel, Oeuvres complètes d“Augustin Fresnel; tome deuxième; imprimerie impériale, Paris, 1868 (in French), section XXXV, pp. 239–246, specifically page 245. This paper was presented by Poisson at the Royal Academy of Sciences in Paris on the 31st of March 1823, and published originally in: Annales de Chimie et de Physique, par MM. Gay-Lussac et Arago,tome vingt-deuxième, Paris, Crochard, 1823, pp. 337–347, specifically page 345. Later, G.G. Stokes cites this paper in The Cambridge and Dublin Mathematical Journal 4 (1849): 1–14, as the first optical description of the black spot in optical contact

    Google Scholar 

  4. Twyman F (1905) Proc. of the Optical Convention, pp. 50–54

    Google Scholar 

  5. Parker RG, Dalladay At (1917) Trans. of the Faraday Soc. 12: 305–313 Historical Patent Picture of the Contact Bonding 55

    Google Scholar 

  6. Obreimoff JW (1930) Proc. Royal Soc. Al27: 290–297

    Google Scholar 

  7. Lord Rayleigh the Younger (1875–1947) (1936) Proc. Royal Soc. A15: 6326–349.

    Google Scholar 

  8. Haisma J, Spierings GACM (2002) Contact bonding, including direct bonding in a historical and recent context of materials science and technology, physics and chemistry, Historical review in a broader scope and comparative outlook. Materials Science & Engineering, Reports: a review journal R37: 1–60

    Google Scholar 

  9. British Patent Specification 312,534, W.E. Williams, Construction of a reflection echelon grating or interferometer, construction of a Fabry—Perot interferometer (etalon), July 11, 1928, complete accepted May 30, 1929.

    Google Scholar 

  10. British Patent Specification 367,859, F. Twyman, J.H. Dowell, Improvements in or relating to length measurements by interferometer; application date: Nov. 26, 1930, completely accepted: Feb. 26, 1932

    Google Scholar 

  11. Haisma J (1988) SOI technologies: their past, present and future. Journal de Physique 49 C4: 3–12

    Google Scholar 

  12. Einstein A (1916) Verhandlungen der Deutschen Physikalischen Gesellschaft 18:318323 (in German)

    Google Scholar 

  13. Einstein A (1917) Phys. Zeitschrift 18: 121–128 (in German)

    ADS  Google Scholar 

  14. US Patent 3,149,290, W.R. Bennett Jr., A. Javan, D.R. Herriott (this name was added in 1970), Gas optical maser; application date: Dec. 28,1960, patented: Sept. 15, 1964

    Google Scholar 

  15. Javan A, Bennett Jr. WR, and Herriott DR (1961) Phys. Rev. Lett. 6: 106–110

    Google Scholar 

  16. US Patent 3,387,226, J. Haisma, S.J. van Hoppe, Laser comprising block of insulating material having a channel therein filled with gas; priority date: July 25,1962; patented: June 4, 1968

    Google Scholar 

  17. US Patent 3,477,036; J. Haisma; Gas laser; priority date: Sept. 24,1964; patented Nov. 4, 1969

    Google Scholar 

  18. US Patent 3,501,713; J. Haisma, A. Looijen; Laser construction; priority date: Oct.7,1965; patented: Mar. 17, 1970

    Google Scholar 

  19. Fox AG and Li T (1961) Bell Syst. Techn. J. 40: 453–508

    Google Scholar 

  20. Haisma J, de Lang H (1963) Phys. Lett. 3: 240–242

    Article  ADS  Google Scholar 

  21. Haisma J (1967) Construction and properties of short stable gas lasers; Thesis; University of Utrecht, the Netherlands. Published in Philips Res. Reports Suppl. No. 1

    Google Scholar 

  22. Lamb Jr WE (1964) Phys. Rev. A 134: 1429–1450

    ADS  Google Scholar 

  23. Haisma J and Bouwhuis G (1964) Phys. Rev. Lett. 12: 287–290

    Article  ADS  Google Scholar 

  24. Witteman WJ and Haisma J (1964) Phys. Rev. Lett. 12: 617–619

    Article  ADS  Google Scholar 

  25. Deutsches Patentschrift 682,073 (in German); no inventor mentioned; Vorrichtung zur Aufzeichnung oder Wiedergabe Kinomatographischer Bild-Ton-Darbietungen; patentiert im Deutschen Reiche vom 10 September 1930 ab

    Google Scholar 

  26. Compaan K, Kramer P (1973) Philips Tech. Review 33:178–180. For more details of this invention (no bonding) see: US Patent 4,041,530; P. Kramer, K. Compaan, R.F.K. Forsthuber; Video disc with phase structure; priority date: Mar. 4,1971; patented: Aug. 9,1977; US Patent 4,160,269; P. Kramer, K. Compaan, R.F.K. Forsthuber; Apparatus for optically reading a phase-modulated optical record carrier: priority date: Mar. 4,1971; patented: Jul. 3, 1979

    Google Scholar 

  27. Alferov Zh I, Andreev VM, Garbuzov DZ, Zhilyaev YuV, Morozov EP, Portnoi EL, and Trofin VG (1971) Soviet Physics-Semiconductors 4: 1573–1575

    Google Scholar 

  28. US Patent 3,239,908; T. Nakamura; Method of making a semiconductor device; priority date: July 26,1961; patented: Mar. 15,1966 56 J. Haisma

    Google Scholar 

  29. US Patent 3,959,045; G.A. Antypas; Process for making III—V devices: filing date: Nov. 18,1974; patented: May 25, 1976

    Google Scholar 

  30. US Patent 4,169,000; J. Riseman; Method of forming an integrated circuit structure with fully-enclosed air isolation; filing date: May 10,1978; patented: Sept. 25, 1979

    Google Scholar 

  31. US Patent 4,700,466; A. Nakagawa, H. Ohashi, T. Ogura, M. Shimbo; Method of manufacturing semiconductor device wherein silicon substrates are bonded together; priority date: Feb. 8,1985; patented: Oct. 20, 1987

    Google Scholar 

  32. US Patent 5,100,839; N. Terao; Method of manufacturing wafers used for electronic devices; priority date: Nov. 1,1988; patented: Mar. 31, 1992

    Google Scholar 

  33. US Patent 5,273,205; B.K. Ju, M.H. Oh, K. N. Kang; Method and apparatus for silicon fusion bonding of silicon substrates using wet oxygen atmosphere; priority date: Nov. 21,1991; patented: Dec. 28, 1993

    Google Scholar 

  34. US Patent 5,009,689; J. Haisma, C.L. Alting, Th.M. Michielsen; Method of manufacturing a semiconductor device; priority date: Jan. 30,1986; patented: Apr. 23, 1991

    Google Scholar 

  35. US Patent 2,567,877; J. de Ment; Electrochemical bonding of aluminum with other materials; application date: July 11,1947; patented Sept. 11,1951

    Google Scholar 

  36. US Patent 3,256,598; I.R. Kramer, C.F. Burrows; Diffusion bonding; filing date: July 25,1963; patented: June 21, 1966

    Google Scholar 

  37. US Patent 3,397,278; D.I. Pommerantz; Anodic bonding; application date: Oct. 3,1966; patented: Aug. 13, 1968

    Google Scholar 

  38. US Patent 3,417,459; D.I. Pommerantz; Bonding electrically conductive metals to insulators; filing date: Mar. 6,1967; patented: Dec. 24, 1968

    Google Scholar 

  39. US Patent 3,595,719; D.I. Pommerantz; Method of bonding an insulator member to a passivating layer covering a surface of a semiconductor device; filing date: Nov. 27,1968; patented: July 27, 1971

    Google Scholar 

  40. US Patent 3,713,068; R.E. Talmo; Bonded assemblies and method of making the same; filing date: June 7,1971; patented: Jan. 23, 1973

    Google Scholar 

  41. US Patent 4,599,792; P. E. Cade, B. El-Kareh, I.W. Kim; Buried field shield for an integrated circuit; filing date: June 15,1984; patented: Jul. 15, 1986

    Google Scholar 

  42. US Patent 4,774,196; R.A. Blanchard; Method of bonding semiconductor wafers; filing date: Aug. 25,1987; patented: Sept. 27, 1988

    Google Scholar 

  43. US Patent 4,752,180; K. Yoshikawa; Method and apparatus for handling semiconductor wafers; priority date (filed as a non-convention): Feb. 14,1985; patented: Jun. 21, 1988

    Google Scholar 

  44. European Patent Application 0,383,391; A.G. Bouwer, J.L. Hagen, J. Haisma, W.M. Walraven; Method of connecting two objects together, for example a slice of an insulating material to a slice of a semiconductor material; priority date: Feb. 17,1989; publication date: Aug. 22,1990

    Google Scholar 

  45. US Patent 4,883,215; U.M. Gösele, R. J. Stengl; Method for bubble-free bonding of silicon wafers; filing date: Dec. 19,1988; patented: Nov. 28, 1989

    Google Scholar 

  46. US Patent 4,962,879; U.M. Gösele, V. Lehmann; Method for bubble-free bonding of silicon wafers; filing date: Sep. 25,1989; patented: Oct. 16, 1990

    Google Scholar 

  47. US Patent 5,915,193; Q.-Y. Tong, U. Gösele, L. Tong; Method for the cleaning and direct bonding of solids; filing date: May 18,1995; patented: Jun. 22, 1999

    Google Scholar 

  48. US Patent 5,232,870; T. Ito, Y. Nakazato; Method for production of bonded wafer; priority date: Sep. 10,1990; patented: Aug. 3,1993 Historical Patent Picture of the Contact Bonding 57

    Google Scholar 

  49. US Patent 6,190,778B1; Ch. Batz-Sohn, G. Kräuter, U. Gösele; Process for joining two solid bodies and the resultant structural element; priority date; Apr. 28,1998, patented: Feb. 20, 2001

    Google Scholar 

  50. US Patent 6,010,591; U. Gösele; Method for the releasable bonding and subsequent separation of reversibly bonded and polished wafers and also a wafer structure and wafer; priority date: Nov. 22,1996; patented: Jan. 4, 2000

    Google Scholar 

  51. US Patent 5,071,785; Y. Nakazato, T. Takei; Method for preparing a substrate for forming semiconductor devices by bonding warped wafers; priority date: Jul. 25,1989; patented: Dec. 10, 1991

    Google Scholar 

  52. US Patent 5,028,558; J. Haisma, C.L. Adema, J.G. de Bruin, Th. M. Michielsen, G.A.C.M. Spierings; Method of manufacturing a silicon-on-insulator semiconductor; priority date: Apr. 13,1988; patented: Jul. 2, 1991

    Google Scholar 

  53. US Patent 5,284,803; J. Haisma, F.J.H.M. van der Kruis; Method of manufacturing a semiconductor body using a carrier wafer and a monocrystalline semiconducting top layer; priority date: Dec. 16,1992; patented: Feb. 8, 1994

    Google Scholar 

  54. US Patent 5,441,442; J. Haisma, P.W. de Haas, F.J.H.M. van der Kruis, J. Vijfvinkel; Method of manufacturing a plate having a plane main surface, method of manufacturing a plate having parallel main surfaces, and device suitable for implementing said methods; priority date: Jun. 5,1992; patented: Aug. 15, 1995

    Google Scholar 

  55. US Patent 5,371,037; T. Yonehara; Semiconductor member and process for preparing semiconductor member; priority date: Aug. 3,1990; patented: Dec. 6, 1994

    Google Scholar 

  56. US Patent 5,374,564; M. Bruel; Process for the production of thin semiconductor material films; priority date: Sept. 18,1991; patented: Dec. 20, 1994

    Google Scholar 

  57. US Patent 5,877,070; U.M. Gösele, Q.-Y. Tong; Method for the transfer of thin layers of monocrystalline material to a desirable substrate; filing date: May 31,1997; patented: Mar. 2, 1999

    Google Scholar 

  58. US Patent 6,150,239; U.M. Gösele, Q.-Y. Tong; Method for the transfer of thin layers of monocrystalline material onto a desirable substrate; filing date: Sep. 30,1998; patented: Nov. 21, 2000

    Google Scholar 

  59. US Patent 5,007,071; M. Nakano, T. Abe; Method of inspecting bonded wafers; priority date: Oct. 14,1988; patented: Apr. 9, 1991

    Google Scholar 

  60. US Patent 2,743,201; R.P. Johnson, P. Del Rey, R.G. Shulman, D.M. Van Winkle (where the name of D.M. Van Winkle was added later on); Monatomic semiconductor devices; application date: Apr. 29,1952; patented: Apr. 24, 1956

    Google Scholar 

  61. US Patent 3,332,137; D.M. Kenney; Method of isolating chips of a wafer of semiconductor material; filing date: Sept. 28,1964; patented: July 25, 1967

    Google Scholar 

  62. US Patent 3,355,636; H. Becke, E.F. Cave, D. Stolnitz; High power, high frequency transistors; filing date: Jun. 29,1965; patented: Nov. 28, 1967

    Google Scholar 

  63. US Patent 4,317,091; R. Dahlberg; Negative semiconductor resistance; priority date: Jul. 3,1979; patented: Feb. 23, 1982

    Google Scholar 

  64. US Patent 4,441,115; R. Dahlberg; Thyristor having a center pn-junction formed by plastic deformation of the crystal lattice; priority date: Jul. 3,1979; patented: Apr. 3, 1984

    Google Scholar 

  65. US Patent 4,285,714; A.R. Kirkpatrick; Electrostatic bonding using externally applied pressure; filing date: Mar. 18,1980; patented: Aug. 25, 1981

    Google Scholar 

  66. US Patent 2,701,326; W.G. Pfann, H.C. Theuerer; Semiconducting translating device; application date: Dec. 30,1949; patented: Feb. 1,1955 58 J. Haisma

    Google Scholar 

  67. US Patent 4,948,029; J. Haisma, A.R. Miedema; Method of bonding two bodies; priority date: Jun. 28,1988; patented: Aug. 14, 1990

    Google Scholar 

  68. US Patent 5,054,683; J. Haisma, G.A.C.M. Spierings, J.G. van Lierop, H.F. van den Berg; Method of bonding together two bodies with silicon oxide and practically pure boron; priority date: Sep. 12,1989; patented: Oct. 8, 1991

    Google Scholar 

  69. US Patent 4,022,648; P.T. Woodberry, D.G. Wilson; Bonding of organic thermoplastic materials; filing date: Feb. 7,1975; patented: May 10, 1977

    Google Scholar 

  70. US Patent 4,465,547; R.E. Belke Jr, R.A. Shirk; Method of bonding a poly(vinylidene fluoride) solid to a solid substrate; filing date: Sep. 29,1983; patented: Aug. 14, 1984

    Google Scholar 

  71. US Patent 5,580,407; J. Haisma, F.J.H.M. van der Kruis, G.A.C.M. Spierings; Method of bonding two objects, at least one of which comprises organic materials; priority date: Jul. 13,1993; patented: Dec. 3, 1996

    Google Scholar 

  72. US Patent 4,994,139; U.K.P. Biermann, G.A.C.M. Spierings, F.J.H.M. van der Kruis, J. Haisma; Method of manufacturing a light-conducting device; priority date: Aug. 16,1988; patented: Feb. 19, 1991

    Google Scholar 

  73. European Patent Application 0,460,763A2; J. Haisma, F.J.H.M van der Kruis, P.F. Bongers, H. Passing; Method of manufacturing a superconductor device; priority date: Jun. 8,1990; published: Dec. 11, 1991

    Google Scholar 

  74. European Patent Application 0,655,424A1; J. Haisma, K.Z. Troost, J.J.C. Groenen, Th.M. Michielsen; Method of bonding two optical surfaces together, optical assembly thus formed, and particle-optical apparatus comprising such an assembly; priority date: Nov. 25,1993; publication date: May 31, 1995

    Google Scholar 

  75. US Patent 5,904,860; M. Nagakubo, H. Suzuki, T. Kurahashi; Method for direct bonding nitride bodies; priority date: Sep. 12,1995; patented: May 18, 1999

    Google Scholar 

  76. US Patent 3,902,979; R. N. Thomas; Insulator substrate with a thin monocrystalline semiconductor layer and method of fabrication; filing date: Jun. 24,1974; patented: Sep. 2, 1975

    Google Scholar 

  77. US Patent 3,997,381; D.R. Wanlass; Method of manufacture of an epitaxial semiconductor layer on an insulating substrate; filing date: Jan. 10,1975; patented: Dec. 14, 1976

    Google Scholar 

  78. US Patent 4,501,060; R.C. Frye, J.E. Griffith, Y.H. Wong; Dielectrically isolated semiconductor devices; filing date: Jan. 24,1983; patented: Feb. 26, 1985

    Google Scholar 

  79. US Patent 4,601,779; J.R. Abernathey, J.B. Lasky, L.A. Nesbit, Th. 0. Sedgwick, S. Stiffler; Method of producing a thin silicon-on-insulator layer; filing date: Jun. 24,1985; patented: Jul. 22, 1986

    Google Scholar 

  80. US Patent 4,735,679; J.B. Lasky; Method of improving silicon-on-insulator uniformity; filing date: Mar. 30,1987; patented: Apr. 5, 1988

    Google Scholar 

  81. US Patent 5,234,535; K.D. Beyer, L.L. Hsu, V. J. Silvestri, A.S. Yapsir; Method of producing a thin silicon-on-insulator layer; filing date: Dec. 10,1992; patented: Aug. 10, 1993

    Google Scholar 

  82. US Patent 5,882,987; K.V. Srikrishnan; Smart-Cut process for the production of thin semiconductor material films; filing date: Aug. 26,1997; patented: Mar. 16, 1999

    Google Scholar 

  83. US Patent 4,771,016; G. Bajor, J.S. Raby; Using a rapid thermal anneal process for manufacturing a wafer bonded SOI semiconductor; filing date: Apr. 24,1987; patented: Sept. 13, 1988

    Google Scholar 

  84. US Patent 5,013,681; D.J. Godbey, H.L. Hughes, F.J. Kub; Method of producing a thin silicon-on-insulator layer; filing date: Sep. 29,1989; patented: May 7,1991 Historical Patent Picture of the Contact Bonding 59

    Google Scholar 

  85. US Patent 5,024,723; U.M. Gösele, V. E. Lehmann; Method of producing a thin silicon-on-insulator layer by wafer bonding and chemical thinning; filing date: May 7,1990; patented: Jun. 18, 1991

    Google Scholar 

  86. US Patent 4,837,186; Y. Ohata, T. Kuramoto, M. Shimbo; Silicon semiconductor substrate with an insulated layer embedded therein and method for forming the same; priority date: Aug. 31,1984; patented: Jun. 6, 1989

    Google Scholar 

  87. US Patent 4,878,957; Y. Y.maguchi, K. Watanabe, A. Nakagawa, K. Furukawa, K. Fukuda, K. Tanzawa; Dielectrically isolated semiconductor substrate; priority dates: Mar. 31, Jul. 14,1988; patented: Nov. 7, 1989

    Google Scholar 

  88. US Patent 5,032,544; T. Ito, Y. Nakazato; Process for producing semiconductor device substrate using polishing guard; priority date: Aug. 17,1989; patented: Jul. 16, 1991

    Google Scholar 

  89. US Patent 5,240,883; T. Abe, M. Katayama, A. Kanai, K. Ohki, M. Nakano; Method of fabricating SOI substrate with uniform thin silicon film; priority date: Dec. 27,1991; patented: Aug. 31, 1993

    Google Scholar 

  90. US Patent 4,547,801; J. Haisma, C.L. Adema, J.M.M. Pasmans, J.H. Walters; Tunable Fabry-Perot interferometer and X-ray display device having such an interferometer; priority date: Mar. 24,1982; patented: Oct. 15, 1985

    Google Scholar 

  91. US Patent 4,810,318; J. Haisma, C.L. Adema, C.L. Alting, R. Brehm; Method of bonding two parts together; priority date: Sept. 8,1983; patented: Mar. 7, 1989

    Google Scholar 

  92. US Patent 4,983,251; J. Haisma, Th. M. Michielsen, J.A. Pals; Method of manufacturing semiconductor devices; priority date: Jun. 20,1985; patented: Jan. 8, 1991

    Google Scholar 

  93. European Patent Application 0,213,299; K. Kitahara; Method for manufacturing a semiconductor device having an element isolation area; priority date: Jun. 21, 1985; publication date: Mar. 11, 1987

    Google Scholar 

  94. US Patent 4,970,175; J. Haisma, J.E.A.M. van den Meerakker, J.H.C. van Vegchel; Method of manufacturing semiconductor device using SEG (silicon epitaxial growth) and a transitory substrate; priority date: Aug. 9,1988; patented: Nov. 13, 1990

    Google Scholar 

  95. US Patent 4,971,925; E.M.L. Alexander, J. Haisma, Th.M. Michielsen, J. van der Velden, J.F.C.M. Verhoeven; Improved method of manufacturing a semiconductor device of the “semiconductor on insulator” type; priority date: Jan. 9,1987; patented: Nov. 20, 1990

    Google Scholar 

  96. US Patent 4,851,078; J.P. Short, G.V. Rouse; Dielectric isolation process using double wafer bonding; filing date: Jun. 29,1987; patented: Jul. 25, 1989

    Google Scholar 

  97. US Patent 4,851,366; R.A. Blanchard; Method for providing dielectrically isolated circuit; filing date: Nov. 13,1987; patented: Jul. 25, 1989

    Google Scholar 

  98. US Patent 5,204,282; K. Tsuruta, S. Huzino, M. K.tada, T. Hattori; M. Yamaoka; Semiconductor circuit structure and method for making the same; priority date: Sep. 30,1988; patented: Apr. 20, 1993

    Google Scholar 

  99. US Patent 5,223,450; S. Fujino, M. Matsui, M. Katada, K. Tsuruta; Method of producing semiconductor substrate having dielectric separation region; priority date: Mar. 30,1990; patented: Jun. 29, 1993

    Google Scholar 

  100. US Patent 4,738,935; M. Shimbo, H. Ohashi, K. Furukawa, K. Fukuda; Method of manufacturing compound semiconductor apparatus; priority date: Feb. 8,1985; patented: Apr. 19, 1988

    Google Scholar 

  101. US Patent 4,935,386; A. Nakagawa, K. Imamura, R. Sato, T. Hoshi; Method of manufacturing semiconductor device including substrate bonding and outdiffusion by thermal heating; priority dates: Feb. 26, Dec. 28,1987; patented: Jun. 19,1990 60 J. Haisma

    Google Scholar 

  102. US Patent 5,688,714; F.P. Widdershoven, J. Haisma, A.J.R. de Kock, A.A. van Gorkum; Method of fabricating a semiconductor device, having a top layer and a base layer joined by wafer bonding; priority date: Apr. 24,1990; patented: Nov. 18, 1997

    Google Scholar 

  103. US Patent 5,089,431; J.A.G. Slatter, H. E. Brockman, J. Haisma; Method of manufacturing a semiconductor device including a static induction transistor; priority date: Oct. 23,1989; patented: Feb. 18, 1992

    Google Scholar 

  104. US Patent 4,121,334; G. Wallis; Application of field-assisted bonding to the mass production of silicon type pressure transducers; filing date: Jan. 14,1977; patented: Oct. 24, 1978

    Google Scholar 

  105. US Patent 5,060,526; P.W. Barth, K. E. P.tersen, J.R. Mallon Jr.; Laminated semiconductor sensor with vibrating element; filing date: May 30,1989; patented: Oct. 29, 1991

    Google Scholar 

  106. US Patent 5,614,678; A.D. Kurtz, A.V. Bemis, T.A. Nunn, A.A. Ned; High pressure piezoresistive transducer; filing date: Feb. 5,1996; patented: Mar. 25, 1997

    Google Scholar 

  107. US Patent 4,400,869; L.B. Wilner, H.V. Wong; Process for producing high temperature pressure transducers and semiconductors; filing date: Feb. 12,1981; patented: Aug. 30, 1983

    Google Scholar 

  108. US Patent 6,038,928; N.I. Maluf, J.R. Logan, G. van Sprakelaar; Miniature gauge pressure sensor using silicon fusion bonding and back etching; filing date: Oct. 6,1997; patented: Mar. 21, 2000

    Google Scholar 

  109. US Patent 4,426,768; J.F. Black, T.W. Grudkowski, A. J. DeMaria; Ultra-thin micro-electric pressure sensors; filing date: Dec. 28,1981; patented: Jan. 24, 1984

    Google Scholar 

  110. US Patent 4,463,336; J.F. Black, Th.W. Grudkowski, A. J. DeMaria; Ultra-thin microelectronic pressure sensors; filing date; Jun. 24,1983; patented: Jul. 31, 1984

    Google Scholar 

  111. US Patent 4,938,742; J.G. Smits; Piezoelectric micropump with microvalves; filing date: Feb. 4,1988; patented: Jul. 3, 1990

    Google Scholar 

  112. US Patent 5,538,221; J. Joswig; Micromechanical valve for micromechanical dosing devices; priority date: Nov. 23,1991; patented: Jul. 23, 1996

    Google Scholar 

  113. US Patent 6,124,145; G. Stemme, E. Kälvesten; Micromachined gas-filled chambers and method of microfabrication; filing date: Jan. 23,1998; patented: Sep. 26, 2000

    Google Scholar 

  114. European Patent Application 1,005,916; J. Hess, H. Bo, R. Weber, I. Ortega, C. Barraud, N.F. de Rooij, B. de Heij; Inhaler with ultrasonic wave nebulizer having nozzle openings superposed in peaks of a standing wave pattern; filing date: Dec. 1,1998; publication date: Jun. 7, 2000

    Google Scholar 

  115. US Patent 5,421,953; M. Nagakubo, S. Fujino, K. Senda, T. Hattori; Method and apparatus for direct bonding two bodies; priority dates: Feb. 16, Oct. 22,1993; patented: Jun. 6, 1995

    Google Scholar 

  116. US Patent 6,180,496B1; S.N. Farrens, B.E. Roberds; In situ plasma wafer bonding method; filing date: Aug. 28,1998; patented: Jan. 30, 2001

    Google Scholar 

  117. US Patent 3,303,549; W.P. Peyser; Method of making semiconductor devices utilizing vacuum welding; filing date: Mar. 23,1964; patented: Feb. 14, 1967

    Google Scholar 

  118. US Patent 5,985,412; U. Gösele; Method of manufacturing microstructures and also microstructure; priority date: Nov. 25,1996; patented: Nov. 16, 1999

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haisma, J. (2004). Direct Bonding, Fusion Bonding, Anodic Bonding, Wafer Bonding: A Historical Patent Picture of the Worldwide Moving Front of the State-of-the-Art of Contact Bonding. In: Alexe, M., Gösele, U. (eds) Wafer Bonding. Springer Series in MATERIALS SCIENCE, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10827-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10827-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05915-5

  • Online ISBN: 978-3-662-10827-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics