Advertisement

Direct Bonding, Fusion Bonding, Anodic Bonding, Wafer Bonding: A Historical Patent Picture of the Worldwide Moving Front of the State-of-the-Art of Contact Bonding

  • J. Haisma
Part of the Springer Series in MATERIALS SCIENCE book series (SSMATERIALS, volume 75)

Abstract

Patents tell their own (hi)story, which is not always covered by scientific literature. They basically represent the moving front of the state of the art. Direct (glue-less) bonding, which occurs under ambient conditions, has a longer history (from the 19th century) than its patented counterpart (from the second quarter of the 20th century); fusion (wafer) bonding dates mainly from after World War II. Contact bonding covers all types of bonding, realized by the face-to-face contacting of two bodies under various conditions (e.g. vacuum) and after-treatments (e.g. annealing).

Keywords

Filing Date Silicon Wafer Porous Silicon Priority Date Direct Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas TR (1999) Rough Surfaces. Imperial College Press, LondonGoogle Scholar
  2. 2.
    Sir Isaac Newton (1642–1727, in the New Style or Gregorian calendar, 1643–1727, in the Old Style or Julian calendar). This discovery is treated in his book: Opticks, or, a treatise of the reflections, refractions, inflections and colours, the fourth edition corrected, London W. Immys, MDCCXXX; further: Newton, Opticks, etc., a reprint from the fourth edition with a foreword by Prof. A. Einstein, Nobel laureate, and an introduction by Prof. E.T. Whittaker, Fellow of the Royal Society; McGraw-Hill, New York, 1931Google Scholar
  3. 3.
    Poisson S-D (1781–1840), Note sur le phénomène des anneaux colorés; to be found in H. de Senarmont, E. Verdet, L. Fresnel, Oeuvres complètes d“Augustin Fresnel; tome deuxième; imprimerie impériale, Paris, 1868 (in French), section XXXV, pp. 239–246, specifically page 245. This paper was presented by Poisson at the Royal Academy of Sciences in Paris on the 31st of March 1823, and published originally in: Annales de Chimie et de Physique, par MM. Gay-Lussac et Arago,tome vingt-deuxième, Paris, Crochard, 1823, pp. 337–347, specifically page 345. Later, G.G. Stokes cites this paper in The Cambridge and Dublin Mathematical Journal 4 (1849): 1–14, as the first optical description of the black spot in optical contactGoogle Scholar
  4. 4.
    Twyman F (1905) Proc. of the Optical Convention, pp. 50–54Google Scholar
  5. 5.
    Parker RG, Dalladay At (1917) Trans. of the Faraday Soc. 12: 305–313 Historical Patent Picture of the Contact Bonding 55Google Scholar
  6. 6.
    Obreimoff JW (1930) Proc. Royal Soc. Al27: 290–297Google Scholar
  7. 7.
    Lord Rayleigh the Younger (1875–1947) (1936) Proc. Royal Soc. A15: 6326–349.Google Scholar
  8. 8.
    Haisma J, Spierings GACM (2002) Contact bonding, including direct bonding in a historical and recent context of materials science and technology, physics and chemistry, Historical review in a broader scope and comparative outlook. Materials Science & Engineering, Reports: a review journal R37: 1–60Google Scholar
  9. 9.
    British Patent Specification 312,534, W.E. Williams, Construction of a reflection echelon grating or interferometer, construction of a Fabry—Perot interferometer (etalon), July 11, 1928, complete accepted May 30, 1929.Google Scholar
  10. 10.
    British Patent Specification 367,859, F. Twyman, J.H. Dowell, Improvements in or relating to length measurements by interferometer; application date: Nov. 26, 1930, completely accepted: Feb. 26, 1932Google Scholar
  11. 11.
    Haisma J (1988) SOI technologies: their past, present and future. Journal de Physique 49 C4: 3–12Google Scholar
  12. 12.
    Einstein A (1916) Verhandlungen der Deutschen Physikalischen Gesellschaft 18:318323 (in German)Google Scholar
  13. 13.
    Einstein A (1917) Phys. Zeitschrift 18: 121–128 (in German)ADSGoogle Scholar
  14. 14.
    US Patent 3,149,290, W.R. Bennett Jr., A. Javan, D.R. Herriott (this name was added in 1970), Gas optical maser; application date: Dec. 28,1960, patented: Sept. 15, 1964Google Scholar
  15. 15.
    Javan A, Bennett Jr. WR, and Herriott DR (1961) Phys. Rev. Lett. 6: 106–110Google Scholar
  16. 16.
    US Patent 3,387,226, J. Haisma, S.J. van Hoppe, Laser comprising block of insulating material having a channel therein filled with gas; priority date: July 25,1962; patented: June 4, 1968Google Scholar
  17. 17.
    US Patent 3,477,036; J. Haisma; Gas laser; priority date: Sept. 24,1964; patented Nov. 4, 1969Google Scholar
  18. 18.
    US Patent 3,501,713; J. Haisma, A. Looijen; Laser construction; priority date: Oct.7,1965; patented: Mar. 17, 1970Google Scholar
  19. 19.
    Fox AG and Li T (1961) Bell Syst. Techn. J. 40: 453–508Google Scholar
  20. 20.
    Haisma J, de Lang H (1963) Phys. Lett. 3: 240–242ADSCrossRefGoogle Scholar
  21. 21.
    Haisma J (1967) Construction and properties of short stable gas lasers; Thesis; University of Utrecht, the Netherlands. Published in Philips Res. Reports Suppl. No. 1Google Scholar
  22. 22.
    Lamb Jr WE (1964) Phys. Rev. A 134: 1429–1450ADSGoogle Scholar
  23. 23.
    Haisma J and Bouwhuis G (1964) Phys. Rev. Lett. 12: 287–290ADSCrossRefGoogle Scholar
  24. 24.
    Witteman WJ and Haisma J (1964) Phys. Rev. Lett. 12: 617–619ADSCrossRefGoogle Scholar
  25. 25.
    Deutsches Patentschrift 682,073 (in German); no inventor mentioned; Vorrichtung zur Aufzeichnung oder Wiedergabe Kinomatographischer Bild-Ton-Darbietungen; patentiert im Deutschen Reiche vom 10 September 1930 abGoogle Scholar
  26. 26.
    Compaan K, Kramer P (1973) Philips Tech. Review 33:178–180. For more details of this invention (no bonding) see: US Patent 4,041,530; P. Kramer, K. Compaan, R.F.K. Forsthuber; Video disc with phase structure; priority date: Mar. 4,1971; patented: Aug. 9,1977; US Patent 4,160,269; P. Kramer, K. Compaan, R.F.K. Forsthuber; Apparatus for optically reading a phase-modulated optical record carrier: priority date: Mar. 4,1971; patented: Jul. 3, 1979Google Scholar
  27. 27.
    Alferov Zh I, Andreev VM, Garbuzov DZ, Zhilyaev YuV, Morozov EP, Portnoi EL, and Trofin VG (1971) Soviet Physics-Semiconductors 4: 1573–1575Google Scholar
  28. 28.
    US Patent 3,239,908; T. Nakamura; Method of making a semiconductor device; priority date: July 26,1961; patented: Mar. 15,1966 56 J. HaismaGoogle Scholar
  29. 29.
    US Patent 3,959,045; G.A. Antypas; Process for making III—V devices: filing date: Nov. 18,1974; patented: May 25, 1976Google Scholar
  30. 30.
    US Patent 4,169,000; J. Riseman; Method of forming an integrated circuit structure with fully-enclosed air isolation; filing date: May 10,1978; patented: Sept. 25, 1979Google Scholar
  31. 31.
    US Patent 4,700,466; A. Nakagawa, H. Ohashi, T. Ogura, M. Shimbo; Method of manufacturing semiconductor device wherein silicon substrates are bonded together; priority date: Feb. 8,1985; patented: Oct. 20, 1987Google Scholar
  32. 32.
    US Patent 5,100,839; N. Terao; Method of manufacturing wafers used for electronic devices; priority date: Nov. 1,1988; patented: Mar. 31, 1992Google Scholar
  33. 33.
    US Patent 5,273,205; B.K. Ju, M.H. Oh, K. N. Kang; Method and apparatus for silicon fusion bonding of silicon substrates using wet oxygen atmosphere; priority date: Nov. 21,1991; patented: Dec. 28, 1993Google Scholar
  34. 34.
    US Patent 5,009,689; J. Haisma, C.L. Alting, Th.M. Michielsen; Method of manufacturing a semiconductor device; priority date: Jan. 30,1986; patented: Apr. 23, 1991Google Scholar
  35. 35.
    US Patent 2,567,877; J. de Ment; Electrochemical bonding of aluminum with other materials; application date: July 11,1947; patented Sept. 11,1951Google Scholar
  36. 36.
    US Patent 3,256,598; I.R. Kramer, C.F. Burrows; Diffusion bonding; filing date: July 25,1963; patented: June 21, 1966Google Scholar
  37. 37.
    US Patent 3,397,278; D.I. Pommerantz; Anodic bonding; application date: Oct. 3,1966; patented: Aug. 13, 1968Google Scholar
  38. 38.
    US Patent 3,417,459; D.I. Pommerantz; Bonding electrically conductive metals to insulators; filing date: Mar. 6,1967; patented: Dec. 24, 1968Google Scholar
  39. 39.
    US Patent 3,595,719; D.I. Pommerantz; Method of bonding an insulator member to a passivating layer covering a surface of a semiconductor device; filing date: Nov. 27,1968; patented: July 27, 1971Google Scholar
  40. 40.
    US Patent 3,713,068; R.E. Talmo; Bonded assemblies and method of making the same; filing date: June 7,1971; patented: Jan. 23, 1973Google Scholar
  41. 41.
    US Patent 4,599,792; P. E. Cade, B. El-Kareh, I.W. Kim; Buried field shield for an integrated circuit; filing date: June 15,1984; patented: Jul. 15, 1986Google Scholar
  42. 42.
    US Patent 4,774,196; R.A. Blanchard; Method of bonding semiconductor wafers; filing date: Aug. 25,1987; patented: Sept. 27, 1988Google Scholar
  43. 43.
    US Patent 4,752,180; K. Yoshikawa; Method and apparatus for handling semiconductor wafers; priority date (filed as a non-convention): Feb. 14,1985; patented: Jun. 21, 1988Google Scholar
  44. 44.
    European Patent Application 0,383,391; A.G. Bouwer, J.L. Hagen, J. Haisma, W.M. Walraven; Method of connecting two objects together, for example a slice of an insulating material to a slice of a semiconductor material; priority date: Feb. 17,1989; publication date: Aug. 22,1990Google Scholar
  45. 45.
    US Patent 4,883,215; U.M. Gösele, R. J. Stengl; Method for bubble-free bonding of silicon wafers; filing date: Dec. 19,1988; patented: Nov. 28, 1989Google Scholar
  46. 46.
    US Patent 4,962,879; U.M. Gösele, V. Lehmann; Method for bubble-free bonding of silicon wafers; filing date: Sep. 25,1989; patented: Oct. 16, 1990Google Scholar
  47. 47.
    US Patent 5,915,193; Q.-Y. Tong, U. Gösele, L. Tong; Method for the cleaning and direct bonding of solids; filing date: May 18,1995; patented: Jun. 22, 1999Google Scholar
  48. 48.
    US Patent 5,232,870; T. Ito, Y. Nakazato; Method for production of bonded wafer; priority date: Sep. 10,1990; patented: Aug. 3,1993 Historical Patent Picture of the Contact Bonding 57Google Scholar
  49. 49.
    US Patent 6,190,778B1; Ch. Batz-Sohn, G. Kräuter, U. Gösele; Process for joining two solid bodies and the resultant structural element; priority date; Apr. 28,1998, patented: Feb. 20, 2001Google Scholar
  50. 50.
    US Patent 6,010,591; U. Gösele; Method for the releasable bonding and subsequent separation of reversibly bonded and polished wafers and also a wafer structure and wafer; priority date: Nov. 22,1996; patented: Jan. 4, 2000Google Scholar
  51. 51.
    US Patent 5,071,785; Y. Nakazato, T. Takei; Method for preparing a substrate for forming semiconductor devices by bonding warped wafers; priority date: Jul. 25,1989; patented: Dec. 10, 1991Google Scholar
  52. 52.
    US Patent 5,028,558; J. Haisma, C.L. Adema, J.G. de Bruin, Th. M. Michielsen, G.A.C.M. Spierings; Method of manufacturing a silicon-on-insulator semiconductor; priority date: Apr. 13,1988; patented: Jul. 2, 1991Google Scholar
  53. 53.
    US Patent 5,284,803; J. Haisma, F.J.H.M. van der Kruis; Method of manufacturing a semiconductor body using a carrier wafer and a monocrystalline semiconducting top layer; priority date: Dec. 16,1992; patented: Feb. 8, 1994Google Scholar
  54. 54.
    US Patent 5,441,442; J. Haisma, P.W. de Haas, F.J.H.M. van der Kruis, J. Vijfvinkel; Method of manufacturing a plate having a plane main surface, method of manufacturing a plate having parallel main surfaces, and device suitable for implementing said methods; priority date: Jun. 5,1992; patented: Aug. 15, 1995Google Scholar
  55. 55.
    US Patent 5,371,037; T. Yonehara; Semiconductor member and process for preparing semiconductor member; priority date: Aug. 3,1990; patented: Dec. 6, 1994Google Scholar
  56. 56.
    US Patent 5,374,564; M. Bruel; Process for the production of thin semiconductor material films; priority date: Sept. 18,1991; patented: Dec. 20, 1994Google Scholar
  57. 57.
    US Patent 5,877,070; U.M. Gösele, Q.-Y. Tong; Method for the transfer of thin layers of monocrystalline material to a desirable substrate; filing date: May 31,1997; patented: Mar. 2, 1999Google Scholar
  58. 58.
    US Patent 6,150,239; U.M. Gösele, Q.-Y. Tong; Method for the transfer of thin layers of monocrystalline material onto a desirable substrate; filing date: Sep. 30,1998; patented: Nov. 21, 2000Google Scholar
  59. 59.
    US Patent 5,007,071; M. Nakano, T. Abe; Method of inspecting bonded wafers; priority date: Oct. 14,1988; patented: Apr. 9, 1991Google Scholar
  60. 60.
    US Patent 2,743,201; R.P. Johnson, P. Del Rey, R.G. Shulman, D.M. Van Winkle (where the name of D.M. Van Winkle was added later on); Monatomic semiconductor devices; application date: Apr. 29,1952; patented: Apr. 24, 1956Google Scholar
  61. 61.
    US Patent 3,332,137; D.M. Kenney; Method of isolating chips of a wafer of semiconductor material; filing date: Sept. 28,1964; patented: July 25, 1967Google Scholar
  62. 62.
    US Patent 3,355,636; H. Becke, E.F. Cave, D. Stolnitz; High power, high frequency transistors; filing date: Jun. 29,1965; patented: Nov. 28, 1967Google Scholar
  63. 63.
    US Patent 4,317,091; R. Dahlberg; Negative semiconductor resistance; priority date: Jul. 3,1979; patented: Feb. 23, 1982Google Scholar
  64. 64.
    US Patent 4,441,115; R. Dahlberg; Thyristor having a center pn-junction formed by plastic deformation of the crystal lattice; priority date: Jul. 3,1979; patented: Apr. 3, 1984Google Scholar
  65. 65.
    US Patent 4,285,714; A.R. Kirkpatrick; Electrostatic bonding using externally applied pressure; filing date: Mar. 18,1980; patented: Aug. 25, 1981Google Scholar
  66. 66.
    US Patent 2,701,326; W.G. Pfann, H.C. Theuerer; Semiconducting translating device; application date: Dec. 30,1949; patented: Feb. 1,1955 58 J. HaismaGoogle Scholar
  67. 67.
    US Patent 4,948,029; J. Haisma, A.R. Miedema; Method of bonding two bodies; priority date: Jun. 28,1988; patented: Aug. 14, 1990Google Scholar
  68. 68.
    US Patent 5,054,683; J. Haisma, G.A.C.M. Spierings, J.G. van Lierop, H.F. van den Berg; Method of bonding together two bodies with silicon oxide and practically pure boron; priority date: Sep. 12,1989; patented: Oct. 8, 1991Google Scholar
  69. 69.
    US Patent 4,022,648; P.T. Woodberry, D.G. Wilson; Bonding of organic thermoplastic materials; filing date: Feb. 7,1975; patented: May 10, 1977Google Scholar
  70. 70.
    US Patent 4,465,547; R.E. Belke Jr, R.A. Shirk; Method of bonding a poly(vinylidene fluoride) solid to a solid substrate; filing date: Sep. 29,1983; patented: Aug. 14, 1984Google Scholar
  71. 71.
    US Patent 5,580,407; J. Haisma, F.J.H.M. van der Kruis, G.A.C.M. Spierings; Method of bonding two objects, at least one of which comprises organic materials; priority date: Jul. 13,1993; patented: Dec. 3, 1996Google Scholar
  72. 72.
    US Patent 4,994,139; U.K.P. Biermann, G.A.C.M. Spierings, F.J.H.M. van der Kruis, J. Haisma; Method of manufacturing a light-conducting device; priority date: Aug. 16,1988; patented: Feb. 19, 1991Google Scholar
  73. 73.
    European Patent Application 0,460,763A2; J. Haisma, F.J.H.M van der Kruis, P.F. Bongers, H. Passing; Method of manufacturing a superconductor device; priority date: Jun. 8,1990; published: Dec. 11, 1991Google Scholar
  74. 74.
    European Patent Application 0,655,424A1; J. Haisma, K.Z. Troost, J.J.C. Groenen, Th.M. Michielsen; Method of bonding two optical surfaces together, optical assembly thus formed, and particle-optical apparatus comprising such an assembly; priority date: Nov. 25,1993; publication date: May 31, 1995Google Scholar
  75. 75.
    US Patent 5,904,860; M. Nagakubo, H. Suzuki, T. Kurahashi; Method for direct bonding nitride bodies; priority date: Sep. 12,1995; patented: May 18, 1999Google Scholar
  76. 76.
    US Patent 3,902,979; R. N. Thomas; Insulator substrate with a thin monocrystalline semiconductor layer and method of fabrication; filing date: Jun. 24,1974; patented: Sep. 2, 1975Google Scholar
  77. 77.
    US Patent 3,997,381; D.R. Wanlass; Method of manufacture of an epitaxial semiconductor layer on an insulating substrate; filing date: Jan. 10,1975; patented: Dec. 14, 1976Google Scholar
  78. 78.
    US Patent 4,501,060; R.C. Frye, J.E. Griffith, Y.H. Wong; Dielectrically isolated semiconductor devices; filing date: Jan. 24,1983; patented: Feb. 26, 1985Google Scholar
  79. 79.
    US Patent 4,601,779; J.R. Abernathey, J.B. Lasky, L.A. Nesbit, Th. 0. Sedgwick, S. Stiffler; Method of producing a thin silicon-on-insulator layer; filing date: Jun. 24,1985; patented: Jul. 22, 1986Google Scholar
  80. 80.
    US Patent 4,735,679; J.B. Lasky; Method of improving silicon-on-insulator uniformity; filing date: Mar. 30,1987; patented: Apr. 5, 1988Google Scholar
  81. 81.
    US Patent 5,234,535; K.D. Beyer, L.L. Hsu, V. J. Silvestri, A.S. Yapsir; Method of producing a thin silicon-on-insulator layer; filing date: Dec. 10,1992; patented: Aug. 10, 1993Google Scholar
  82. 82.
    US Patent 5,882,987; K.V. Srikrishnan; Smart-Cut process for the production of thin semiconductor material films; filing date: Aug. 26,1997; patented: Mar. 16, 1999Google Scholar
  83. 83.
    US Patent 4,771,016; G. Bajor, J.S. Raby; Using a rapid thermal anneal process for manufacturing a wafer bonded SOI semiconductor; filing date: Apr. 24,1987; patented: Sept. 13, 1988Google Scholar
  84. 84.
    US Patent 5,013,681; D.J. Godbey, H.L. Hughes, F.J. Kub; Method of producing a thin silicon-on-insulator layer; filing date: Sep. 29,1989; patented: May 7,1991 Historical Patent Picture of the Contact Bonding 59Google Scholar
  85. 85.
    US Patent 5,024,723; U.M. Gösele, V. E. Lehmann; Method of producing a thin silicon-on-insulator layer by wafer bonding and chemical thinning; filing date: May 7,1990; patented: Jun. 18, 1991Google Scholar
  86. 86.
    US Patent 4,837,186; Y. Ohata, T. Kuramoto, M. Shimbo; Silicon semiconductor substrate with an insulated layer embedded therein and method for forming the same; priority date: Aug. 31,1984; patented: Jun. 6, 1989Google Scholar
  87. 87.
    US Patent 4,878,957; Y. Y.maguchi, K. Watanabe, A. Nakagawa, K. Furukawa, K. Fukuda, K. Tanzawa; Dielectrically isolated semiconductor substrate; priority dates: Mar. 31, Jul. 14,1988; patented: Nov. 7, 1989Google Scholar
  88. 88.
    US Patent 5,032,544; T. Ito, Y. Nakazato; Process for producing semiconductor device substrate using polishing guard; priority date: Aug. 17,1989; patented: Jul. 16, 1991Google Scholar
  89. 89.
    US Patent 5,240,883; T. Abe, M. Katayama, A. Kanai, K. Ohki, M. Nakano; Method of fabricating SOI substrate with uniform thin silicon film; priority date: Dec. 27,1991; patented: Aug. 31, 1993Google Scholar
  90. 90.
    US Patent 4,547,801; J. Haisma, C.L. Adema, J.M.M. Pasmans, J.H. Walters; Tunable Fabry-Perot interferometer and X-ray display device having such an interferometer; priority date: Mar. 24,1982; patented: Oct. 15, 1985Google Scholar
  91. 91.
    US Patent 4,810,318; J. Haisma, C.L. Adema, C.L. Alting, R. Brehm; Method of bonding two parts together; priority date: Sept. 8,1983; patented: Mar. 7, 1989Google Scholar
  92. 92.
    US Patent 4,983,251; J. Haisma, Th. M. Michielsen, J.A. Pals; Method of manufacturing semiconductor devices; priority date: Jun. 20,1985; patented: Jan. 8, 1991Google Scholar
  93. 93.
    European Patent Application 0,213,299; K. Kitahara; Method for manufacturing a semiconductor device having an element isolation area; priority date: Jun. 21, 1985; publication date: Mar. 11, 1987Google Scholar
  94. 94.
    US Patent 4,970,175; J. Haisma, J.E.A.M. van den Meerakker, J.H.C. van Vegchel; Method of manufacturing semiconductor device using SEG (silicon epitaxial growth) and a transitory substrate; priority date: Aug. 9,1988; patented: Nov. 13, 1990Google Scholar
  95. 95.
    US Patent 4,971,925; E.M.L. Alexander, J. Haisma, Th.M. Michielsen, J. van der Velden, J.F.C.M. Verhoeven; Improved method of manufacturing a semiconductor device of the “semiconductor on insulator” type; priority date: Jan. 9,1987; patented: Nov. 20, 1990Google Scholar
  96. 96.
    US Patent 4,851,078; J.P. Short, G.V. Rouse; Dielectric isolation process using double wafer bonding; filing date: Jun. 29,1987; patented: Jul. 25, 1989Google Scholar
  97. 97.
    US Patent 4,851,366; R.A. Blanchard; Method for providing dielectrically isolated circuit; filing date: Nov. 13,1987; patented: Jul. 25, 1989Google Scholar
  98. 98.
    US Patent 5,204,282; K. Tsuruta, S. Huzino, M. K.tada, T. Hattori; M. Yamaoka; Semiconductor circuit structure and method for making the same; priority date: Sep. 30,1988; patented: Apr. 20, 1993Google Scholar
  99. 99.
    US Patent 5,223,450; S. Fujino, M. Matsui, M. Katada, K. Tsuruta; Method of producing semiconductor substrate having dielectric separation region; priority date: Mar. 30,1990; patented: Jun. 29, 1993Google Scholar
  100. 100.
    US Patent 4,738,935; M. Shimbo, H. Ohashi, K. Furukawa, K. Fukuda; Method of manufacturing compound semiconductor apparatus; priority date: Feb. 8,1985; patented: Apr. 19, 1988Google Scholar
  101. 101.
    US Patent 4,935,386; A. Nakagawa, K. Imamura, R. Sato, T. Hoshi; Method of manufacturing semiconductor device including substrate bonding and outdiffusion by thermal heating; priority dates: Feb. 26, Dec. 28,1987; patented: Jun. 19,1990 60 J. HaismaGoogle Scholar
  102. 102.
    US Patent 5,688,714; F.P. Widdershoven, J. Haisma, A.J.R. de Kock, A.A. van Gorkum; Method of fabricating a semiconductor device, having a top layer and a base layer joined by wafer bonding; priority date: Apr. 24,1990; patented: Nov. 18, 1997Google Scholar
  103. 103.
    US Patent 5,089,431; J.A.G. Slatter, H. E. Brockman, J. Haisma; Method of manufacturing a semiconductor device including a static induction transistor; priority date: Oct. 23,1989; patented: Feb. 18, 1992Google Scholar
  104. 104.
    US Patent 4,121,334; G. Wallis; Application of field-assisted bonding to the mass production of silicon type pressure transducers; filing date: Jan. 14,1977; patented: Oct. 24, 1978Google Scholar
  105. 105.
    US Patent 5,060,526; P.W. Barth, K. E. P.tersen, J.R. Mallon Jr.; Laminated semiconductor sensor with vibrating element; filing date: May 30,1989; patented: Oct. 29, 1991Google Scholar
  106. 106.
    US Patent 5,614,678; A.D. Kurtz, A.V. Bemis, T.A. Nunn, A.A. Ned; High pressure piezoresistive transducer; filing date: Feb. 5,1996; patented: Mar. 25, 1997Google Scholar
  107. 107.
    US Patent 4,400,869; L.B. Wilner, H.V. Wong; Process for producing high temperature pressure transducers and semiconductors; filing date: Feb. 12,1981; patented: Aug. 30, 1983Google Scholar
  108. 108.
    US Patent 6,038,928; N.I. Maluf, J.R. Logan, G. van Sprakelaar; Miniature gauge pressure sensor using silicon fusion bonding and back etching; filing date: Oct. 6,1997; patented: Mar. 21, 2000Google Scholar
  109. 109.
    US Patent 4,426,768; J.F. Black, T.W. Grudkowski, A. J. DeMaria; Ultra-thin micro-electric pressure sensors; filing date: Dec. 28,1981; patented: Jan. 24, 1984Google Scholar
  110. 110.
    US Patent 4,463,336; J.F. Black, Th.W. Grudkowski, A. J. DeMaria; Ultra-thin microelectronic pressure sensors; filing date; Jun. 24,1983; patented: Jul. 31, 1984Google Scholar
  111. 111.
    US Patent 4,938,742; J.G. Smits; Piezoelectric micropump with microvalves; filing date: Feb. 4,1988; patented: Jul. 3, 1990Google Scholar
  112. 112.
    US Patent 5,538,221; J. Joswig; Micromechanical valve for micromechanical dosing devices; priority date: Nov. 23,1991; patented: Jul. 23, 1996Google Scholar
  113. 113.
    US Patent 6,124,145; G. Stemme, E. Kälvesten; Micromachined gas-filled chambers and method of microfabrication; filing date: Jan. 23,1998; patented: Sep. 26, 2000Google Scholar
  114. 114.
    European Patent Application 1,005,916; J. Hess, H. Bo, R. Weber, I. Ortega, C. Barraud, N.F. de Rooij, B. de Heij; Inhaler with ultrasonic wave nebulizer having nozzle openings superposed in peaks of a standing wave pattern; filing date: Dec. 1,1998; publication date: Jun. 7, 2000Google Scholar
  115. 115.
    US Patent 5,421,953; M. Nagakubo, S. Fujino, K. Senda, T. Hattori; Method and apparatus for direct bonding two bodies; priority dates: Feb. 16, Oct. 22,1993; patented: Jun. 6, 1995Google Scholar
  116. 116.
    US Patent 6,180,496B1; S.N. Farrens, B.E. Roberds; In situ plasma wafer bonding method; filing date: Aug. 28,1998; patented: Jan. 30, 2001Google Scholar
  117. 117.
    US Patent 3,303,549; W.P. Peyser; Method of making semiconductor devices utilizing vacuum welding; filing date: Mar. 23,1964; patented: Feb. 14, 1967Google Scholar
  118. 118.
    US Patent 5,985,412; U. Gösele; Method of manufacturing microstructures and also microstructure; priority date: Nov. 25,1996; patented: Nov. 16, 1999Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. Haisma

There are no affiliations available

Personalised recommendations