Skip to main content

ROTEX — Die Telerobotik-Konzepte des ersten Roboters im Weltraum

  • Conference paper

Part of the book series: IPA IAO FhG Forschung und Praxis ((925,volume 42))

Zusammenfassung

Ende April 93 führte erstmalig in der Geschichte der Raumfahrt bei der Spacelab-D2-Mission ein kleiner, mit lokaler, ”multisensorieller” Intelligenz ausgestatteter Roboter an Bord eines Raumfahrzeuges prototypische Aufgaben völlig flexibel in den unterschiedlichsten Betriebsarten durch; nämlich vorprogrammiert (und während der Mission vom Boden aus umprogrammiert), von Astronauten über die sog. DLR-Steuerkugel und einen TV-Stereo-Monitor ferngesteuert, aber auch direkt vom Boden aus ferngesteuert, sei es durch den Menschen oder rein maschinell. Der Roboter mußte in diesen Betriebsarten Steckverbindungen in Form eines Bajonett-Verschlusses lösen bzw. wiederherstellen, mechanische Strukturen zusammen- bzw. auseinanderbauen und ein freifliegendes Objekt einfangen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. S.Lee, G. Bekey, A.K. Bejczy, “Computer control of space-borne teleoperators with sensory feedback”, Proceedings IEEE Conference on Robotics and Automation, S. 205–214, St. Louis, Missouri, 25 – 28 March 1985.

    Google Scholar 

  2. J. Heindl, G. Hirzinger, “Device for programming movements of a robot”, US-Patent: No. 4,589,810, May 20, 1986.

    Google Scholar 

  3. G. Hirzinger, J. Dietrich, “Multisensory robots and sensorbased path generation”. Proceedings IEEE Conference on Robotics and Automation, S. 1992–2001, San Francisco, April 7– 10, 1986.

    Google Scholar 

  4. M.T. Mason, “Compliance and force control for computer controlled manipulators”, IEEE Trans. on Systems, Man and Cybernetics, Vol SMC-11, No. 6 ( 1981, 418 – 432 ).

    Article  Google Scholar 

  5. G. Hirzinger, K. Landzettel, “Sensory feedback structures for robots with supervised learning”. Proceedings IEEE Conference, Int. Conference on Robotics and Automation, S. 627–635, St. Louis, Missouri, March 1985.

    Google Scholar 

  6. G. Hirzinger, J. Heindl, “ Sensor programming, a new way for teaching a robot paths and forces torques simultaneously”. 3rd Int. Conference on Robot Vision and Sensory Controls, Cambridge, Massachusetts/USA, Nov. 7 – 10. 1983.

    Google Scholar 

  7. T.B. Sheridan, “Human supervisory control of robot systems”. Proceedings IEEE Conference, Int. Conference on Robotics and Automation, San Francisco, April 7 – 10, 1986.

    Google Scholar 

  8. B.C. Vemuri, G. Skofteland, “Motion estimation from multi-sensor data for tele-robotics”, IEEE Workshop on Intelligent Motion Control, Istanbul, August 20 –22, 1990.

    Google Scholar 

  9. G. Hirzinger, J. Heindl, K. Landzettel, “Predictive and knowledge-based telerobotic control concepts”. IEEE Conference on Robotics and Automation, Scottsdale, Arizona, May 14 – 19, 1989.

    Google Scholar 

  10. / J. Dietrich, G. Hirzinger, B. Gombert, J. Schott, “On a Unified Concept for a New Generation of Light-Weight-Robots”, Proceedings of the Conference ISER, Int. Symposium on Experimental Robotics, Montreal, Canada, June 1989.

    Google Scholar 

  11. F. Lange, “A Learning Concept for Improving Robot Force Control”, IFAC Symposium on Robot Control, Karlsruhe, Oct. 1988.

    Google Scholar 

  12. J. S. Albus, “A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC) ”, Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, pp. 221 – 227, Sept. 1975.

    Google Scholar 

  13. S. Hayati, S.T. Venkataraman, “Design and Implementation of a Robot Control System with Traded and Shared Control Capability”, Proceedings IEEE Conference Robotics and Automation, Scottsdale, 1989.

    Google Scholar 

  14. L. Conway, R. Volz, M. Walker, “Tele-Autonomous Systems: Methods and Architectures for Intermingling Autonomous and Telerobotic Technology”, Proceedings IEEE Conference Robotics and Automation, Raleigh, 1987.

    Google Scholar 

  15. G. Saridis, “Machine-Intelligent Robots: A Hierarchical Control Approach”, in Machine Intelligence and Knowledge Engineering for Robotic Applications, NATO ASI Series F. Vol. 33, Springer Verlag 1987.

    Google Scholar 

  16. G. Hirzinger, J. Dietrich, B. Gombert, J. Heindl, K. Landzettel, J. Schott, “The sensory and telerobotic aspects of the space robot technology experiment ROTEX”l, Proc. i-SAIRAS 2th Int. Symposium Artificial Intelligence, Robotics and Automation, in Space, Toulouse, France, Sept.30-Oct. 2, 1992.

    Google Scholar 

  17. G. Hirzinger, J. Heindl, K. Landzettel, B. Brunner, “Multisensory shared autonomy — a key issue in the space robot technology experiment ROTEX”, IEEE Conf. on Intelligent Robots and Systems (IROS), Raleigh, USA, July 7 – 10, 1992.

    Google Scholar 

  18. J. Funda, R.P. Paul, “Efficient control of a robotic system for time-delayed environments”. Proceedings of the Fifth International Conference on Robotics and Automation, pages 133 – 137, 1989.

    Google Scholar 

  19. P. Simkens, “Graphical simulation of sensor controlled robots”. PhD. Thesis, 1990, KU Leuven.

    Google Scholar 

  20. D. Dickmanns, “4D-dynamic scene analysis with integral spatio-temporal models”, Fourth Int. Symposium on Robotics Research, Santa Cruz, Aug. 1987.

    Google Scholar 

  21. Christian Fagerer and Gerhard Hirzinger, “Predictive Telerobotic Concept for Grasping a Floating Object”, Proc. IFAC Workshop on Spacecraft Automation and On-Board Autonomous Mission Control, Darmstadt, Sept. 1992

    Google Scholar 

  22. B. Brunner, G. Hirzinger, K. Landzettel, J. Heindl, “Multisensory shared autonomy and tele-sensor-programming — key issues in the space robot technology experiment ROTEX”, IROS’93 International Conference on Intelligent Robots and Systems, Yokohama, Japan, July 26 – 30, 1993.

    Google Scholar 

  23. G. Hirzinger, A. Baader, R. Koeppe, M. Schedi, “Towards a new generation of multisensory light-weight robots with learning capabilities”, IFAC’93 World Congress, Sydney, Australia, July 18 – 23, 1993.

    Google Scholar 

  24. G. Hirzinger “Mechatronik-Konzepte beim Entwurf neuer, multisensorieller Leichtbau-Roboter”, Second Conf. on Mechatronics and Robotics, Duisburg, 27. – 29. Sept. 93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirzinger, G., Landzettel, K., Heindl, J., Brunner, B. (1994). ROTEX — Die Telerobotik-Konzepte des ersten Roboters im Weltraum. In: Warnecke, HJ., Bullinger, HJ. (eds) Virtual Reality ’94. IPA IAO FhG Forschung und Praxis, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10795-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10795-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57768-3

  • Online ISBN: 978-3-662-10795-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics