Skip to main content

Konstruktive Hinweise für den Bau von Wärmeübertragern

  • Chapter
VDI-Wärmeatlas

Zusammenfassung

Bei chemischen und verfahrenstechnischen vorgängen werden viielerleii Aufgaben der Wärmeübertragung gestellt. Sie ergeben sich aus den betrieblichen Erfordernissen und den Eigenschaften der Wärmee abgeebenden und aufnehmenden Stoffe. Es kommen verschiedene Arten der Wärmeübertragung in Betracht.

Bearbeiter des Abschnitts Oa: Dr.-Ing. E. Mach, Heidelberg

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Schrifttum

  1. Gerätesicherheitsgesetz

    Google Scholar 

  2. Richtlinie 97/23-EG des Europäischen Parlaments und Rates vom 29. Mai 1997 zur Angleichung der Rechtsvorschriften der Mitgliedsstaaten über Druckgeräte

    Google Scholar 

  3. AD 2000-Regelwerk, herausgegeben vom Verband der Technischen Überwachungs-Vereine e.V., Essen

    Google Scholar 

  4. Betriebssicherheitsverordnung

    Google Scholar 

  5. Podhorsky, M., u H. Krips: Wärmetauscher, Aktuelle Probleme der Konstruktion und Berechnung. FDBR-Fachbuchreihe, Band 5, Vulkan-Verlag Essen, 1990.

    Google Scholar 

  6. Sterr, G.: Die festigkeitsmäßige Berechnung von Wärmeaustauschern mit geraden Rohren. TÜV 8, 1975.

    Google Scholar 

  7. TEMA, Standards of Tubular Exchanger Manufacturers Association.

    Google Scholar 

  8. Würmseher, H., A. Swozil u. J. Künzel: Kohlenstoff und Graphit als Werkstoff für hohe Korrosionsbeanspruchung im Druckbehälter- und Apparatebau. Swiss Chem 5 (1983) Nr. 10 a.

    Google Scholar 

  9. A working guide to shell-and-tube heat exchangers. Stanley Yokell, McGraw-Hill. 1. Aufl. 1990.

    Google Scholar 

  10. Blevins, R. D.: Flow-induced vibration. 2. Aufl. New York: Van Nostrand Reinhold 1990.

    Google Scholar 

  11. Chen, S. S.: Flow-induced vibration of circular cylindrical structures. Washington, DC (USA): Hemisphere Publ. 1987.

    Google Scholar 

  12. Gelbe, H., M. Jahr u. K. Schröder: Flow-induced vibrations in heat exchanger tube bundeis. Chem. Eng. and Proc. 34 (1995) S. 289/298.

    CAS  Google Scholar 

  13. Gasch, R., u K. Knothe: Strukturdynamik. Bd. 2: Kontinua und ihre Diskretisierung. Berlin: Springer Verl. 1989.

    Google Scholar 

  14. Gelbe, H., U. Mohr u. K. Schröder: Schwingungen in Wärmeübertrager-Rohrbündeln. Computerprogramm „Good Vibration“ nach VDI-Wärmeatlas, 9. Aufl., Kap. Oc. TU Berlin 2002.

    Google Scholar 

  15. Jahr, M.: Einflüsse von Strukturparametern und Strömungsverteilung auf das Schwingverhalten mit Luft angeströmter Rohrbündel. Diss. TU Berlin 1995.

    Google Scholar 

  16. Yeh, Y. S., u S. S. Chen: Vibration of component cooling water heat exchangers. ASME PVP Conf., Nashville, Tennessee (USA). 189 (1990) S. 153/164.

    Google Scholar 

  17. Gorman, D. J.: Exact analytical solutions for free vibration of steam generator U-tubes. J. Pressure Vessel Technol. 110 (1988) 11, S. 422/429.

    Google Scholar 

  18. Standards of Tubular Exchanger Manufactures Association. 7. Aufl. TEMA, New York 1987.

    Google Scholar 

  19. AD-Merkblatt B5: Ebene Böden und Platten nebst Verankerungen. Berlin: Beuth Verl. 1991.

    Google Scholar 

  20. AD-Merkblatt S3/7: Berücksichtigung von Wärmespannungen bei Wärmeaustauschern mit festen Rohrplatten. Berlin: Beuth Verl. 1991.

    Google Scholar 

  21. Parker, R.: Acoustic resonances in passages containing banks of heat exchanger tubes. J. Sound and Vibration 57 (1978) S. 245/260.

    Google Scholar 

  22. Ziada, S., A. Oengören u. E. T Bühlmann: On acoustical resonance in tube arrays. Part I: Experiments. J. Fluids and Structures 3 (1989) S. 293/314.

    Google Scholar 

  23. Blevins, R. D.: Formulas for natural frequency and mode shape. New York: Van Nostrand Reinhold 1979.

    Google Scholar 

  24. Pettigrew, M. J., H. G. D. Goyder et al.: Damping of multispan heat exchanger tubes. Part I: In gases. ASME PVP Conf., Chicago, Ill. (USA). 104 (1986) S. 81/87.

    Google Scholar 

  25. Pettigrew, M. J., R. J. Rogers u. F. Axisa: Damping of multispan heat exchanger tubes. Part II: In liquids. ASME PVP Conf., Chicago, Ill. (USA). 104 (1986) S. 89/98.

    Google Scholar 

  26. Connors, H. J.: An experimental investigation of the flow-induced vibration of tube arrays in cross-flow. Ph.D. Thesis, Univ. of Pittsburgh, Pa. (USA) 1970.

    Google Scholar 

  27. Andjelic, M.: Stabilitätsverhalten querangeströmter Rohrbündel mit versetzter Dreiecksteilung. Diss. Univ. Hannover 1988.

    Google Scholar 

  28. Andjelic, M., u K. Popp: Stability effects in a normal triangular cylinder array. J. Fluids and Structures 3 (1989) S. 165/185.

    Google Scholar 

  29. Chen, S. S., u J. A. Jendrzejczek: Stability of tube arrays in cross-flow. Nuclear Engng. and Design 75 (1982) S. 351/373.

    Google Scholar 

  30. Weaver, D. S., u J. A. Fitzpatrick: A review of flow-induced vibration in heat exchangers. Proc. Int. Conf. on Flow-Induced Vibrations. Bowness-on-Windermere (Großbritannien) 1987. Al (1987) S. 1/17.

    Google Scholar 

  31. Pettigrew, M. J., u C. E. Taylor: Fluid-elastic instability of heat exchanger tube bundles. Review and design recommendations. Proc. Int. Conf. Inst. Mech. Eng. on Flow-Induced Vibration. Brighton (Großbritannien) 1991. C 416/015 (1991) S. 349/368.

    Google Scholar 

  32. Gelbe, H., u K. Schröder: Bestimmung der fluidelastischen Instabilität in querangeströmten Rohrbündeln. Chem.-Ing.-Techn. 70 (1998) 1/2, S. 80/88.

    CAS  Google Scholar 

  33. Schröder, K., u H. Gelbe: New design recommendations for fluid-elastic instability in heat exchanger tube bundles. J. Fluids and Structures 13 (1999) 3, S. 361/379.

    Google Scholar 

  34. Troidl, H.: Strömungsinduzierte Schwingungen querangeströmter Rohrbündel bei versetzter und fluchtender Rohranordnung. Diss. TU. München 1986.

    Google Scholar 

  35. Chen, S. S., u J. A. Jendrzejczyk: Experiments on fluid instability in tube banks subjected to liquid cross-flow. J. Sound and Vibration 78 (1981) 3, S. 355/381.

    Google Scholar 

  36. Yeung, H. C., u D. C. Weaver: The effect of approach flow direction on the flow-induced vibrations of a triangular tube array. ASME J. Mech. Design 105 (1983) S. 76/82.

    Google Scholar 

  37. Axisa, F., B. Villard et al.: Vibration of tube bundles subjected to air-water and steam-water cross-flow. Preliminary results on fluid-elastic instability. Proc. ASME Symp. on flow-induced vibrations. New Orleans, La. (USA) 1984. 2 (1984) S. 269/284.

    Google Scholar 

  38. Ulbrich, R., u D. Mewes: Vertical, upward gas-liquid two-phase flow across a tube bundle. Int. J. Multiphase Flow 20 (1994) 2, S. 249/272.

    CAS  Google Scholar 

  39. Feenstra, P., R. L. Judd u. D. S. Weaver: Fluid-elastic instability in a tube array subjected to two-phase R-11 cross-flow. ASME PVP Conf. on Flow-Induced Vibration. Hawaii (USA). 298 (1995) S. 13/27.

    Google Scholar 

  40. Mann, W., u F. Mayinger: Flow-induced vibration of tube bundles subjected to single- and two-phase cross-flow. Proc. 2nd Int. Conf. on Multiphase Flow. Kyoto (Japan) 1995.4 (1995) S. 9/15 (s. auch Mann, W.: Schwingungsanregungen in Rohrbündeln durch Dichteschwankungen in Dampf-Flüssigkeits-Strömungen. Fortschr.-Ber. VDI, Reihe 6, Nr. 359. Düsseldorf: VDI-Verl. 1997).

    Google Scholar 

  41. Feenstra, P., D. S. Weaver u. R. L. Judd: Modelling two-phase flow-excited fluid-elastic instability in tube arrays. Proc. 7th Int. Conf. on Flow-Induced Vibration. FIV 2000, Luzern (Schweiz) 2000. Hrsg.: S. Ziada, T. Staubli. Rotterdam (Niederlande): Balkema 2000, S. 545/554.

    Google Scholar 

  42. Pettigrew, M. J., J. H. Tromp et al.: Vibration of tube bundles in two-phase cross-flow. Part 1: Hydrodynamic mass and damping. Part 2: Fluid-elastic instability. Trans. ASME J. Pressure Vessel Technol. Ill (1989) S. 466/487.

    Google Scholar 

  43. Pettigrew, M. J., C. E. Taylor et al.: Vibration of tube bundles in two-phase Freon cross-flow. ASME PVP Conf. on Flow-Induced Vibration. Minneapolis, Minn. (USA). 273 (1994) S. 211/226.

    Google Scholar 

  44. Pettigrew, M. J., u C. E. Taylor: Two-phase flow-induced vibration: An overview. J. Pressure Vessel Technol. 116 (1994) S. 233/253.

    CAS  Google Scholar 

  45. Taylor, C. E., u M. Pettigrew: Effect of flow regime and void fraction on tube bundle vibration. Proc. 7th Int. Conf. on Flow-Induced Vibration. FIV 2000, Luzern (Schweiz) 2000. Hrsg.: S. Ziada, T. Staubli. Rotterdam (Niederlande): Balkema 2000, S. 529/536.

    Google Scholar 

  46. Pettigrew, M. J., C. E. Taylor u. B. S. Kim: The effect of tube bundle geometry on vibration in two-phase cross-flow. Proc. 7th Int. Conf. on Flow-Induced Vibration. FIV 2000, Luzern (Schweiz) 2000. Hrsg.: S. Ziada, T. Staubli. Rotterdam (Niederlande): Balkema 2000, S. 561/568.

    Google Scholar 

  47. Ziada, S., u A. Oengören: Acoustic and tube resonances in tube bundles. Ber. Nr. SAK\TB92/63. Sulzer Innotec, Winterthur (Schweiz) 1992.

    Google Scholar 

  48. Oengören, A., u S. Ziada: Unsteady fluid forces acting on a square tube bundle in air cross-flow. ASME Int. Symp. on Flow-Induced Vibration and Noise. Anaheim, Ca. (USA). 1 (1992) S. 55/74.

    Google Scholar 

  49. Oengören, A., u S. Ziada: Vortex shedding, acoustic resonance and turbulent buffeting in normal triangular tube arrays. 6th Int. Conf. on Flow-Induced Vibration. London 1995. Hrsg.: P. Bearman. Rotterdam (Niederlande): Balkema 1995, S. 295/313.

    Google Scholar 

  50. Axisa, F., J. Antunes et al.: Random excitation of heat exchanger tubes by cross-flow. Flow-induced vibration of cylinder arrays in cross-flow. ASME Publ. Nr. G442 (1988), S. 23/46 (s. auch Axisa, F.: Random excitation of heat exchanger tubes by two-phase cross-flow. Proc. Int. Symp. on Flow-Induced Vibration. Anaheim, Ca. (USA) 1992. 1 (1992) S. 119/140).

    Google Scholar 

  51. Romberg, O.: Zum Turbulenzeinfluß auf das Schwingungsverhalten querangeströmter Rohrbündel. Fortschr.-Ber. VDI, Reihe 11, Nr. 267. Düsseldorf: VDI-Verl. 1998.

    Google Scholar 

  52. Taylor, C E., u M. J. Pettigrew: Random excitation forces in heat exchanger tube bundles. ASME PVP Conf. on Flow-Induced Vibration. Boston, Mass. (USA) 1999. 389 (1999) S. 35/42.

    Google Scholar 

  53. Au-Yang, M. K.: Joint and cross acceptances for cross flow-induced vibration. Part I and IL ASME PVP Conf. on Flow-Induced Vibration. Boston, Mass. (USA) 1999. 389 (1999) S. 17/33.

    Google Scholar 

  54. Weaver, D. S.: Vortex shedding and acoustic resonance in heat exchanger tube arrays. Technology for the 90s, Kap. 6. ASME Publ., New York 1993, S. 776/810.

    Google Scholar 

  55. Ziada, S., U. Bolleter u. Y. N. Chen: Vortex shedding and acoustic resonance in a staggered-yawed array of tubes. ASME Symp. on Flow-Induced Vibrations 1984. Hrsg.: M. P. Païdoussis et. al. 2 (1984) S. 227/242.

    Google Scholar 

  56. Oengören, A., u S. Ziada: Flow periodicity and acoustic resonance in parallel triangular tube bundles. ASME AD 53/2. 4th Int. Symp. on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise. Dallas, Texas (USA) 1997. II (1997) S. 183/192 (s. auch Ziada, S. u.A. Oengören: Flow periodicity ... J. Fluids and Structures 14 (2000) S. 197/219).

    Google Scholar 

  57. Pettigrew, M. J., u D. J. Gorman: Vibration of heat exchange components in liquid and two-phase cross-flow. Proc. BNES, Int. Conf. on Vibration of Nuclear Plants. Keswick (Großbritannien) 1978. Ber. 2.3, 1978.

    Google Scholar 

  58. Polak, D. R., u D. S. Weaver: Vortex shedding in normal triangular tube arrays. ASME PVP Conf. on Flow-Induced Vibration. Minneapolis, Minn. (USA). 273 (1994) S. 145/156.

    Google Scholar 

  59. Weaver, D. S., u H. C. Yeung: The effect of tube mass on the flow-induced response of various tube arrays in water. J. Sound and Vibration 93 (1984) S. 409/425.

    Google Scholar 

  60. Zukauskas, A., u V. Katinas: Flow-induced vibrations in heat exchanger tube banks. IUTAM Symp. on Practical Experiences with Flow-Induced Vibrations. Karlsruhe 1979. Hrsg.: E. Naudascher, D. Rockwell. Berlin: Springer Verl. 1980.

    Google Scholar 

  61. Weaver, D. S., H. Y. Lian u. X. Y. Huang: Vortex shedding in rotated square tube arrays. J. Fluid and Structures 7 (1993) S. 107/121.

    Google Scholar 

  62. Ziada, S., u A. Oengören: Vorticity shedding and acoustic resonance in an in-line tube bundle. Part I: Vorticity shedding. J. Fluids and Structures 6 (1992) 3, S. 271/292.

    Google Scholar 

  63. Ziada, S., u A. Oengören: Vortex shedding in an in-line tube bundle with large tube spacings. J. Fluids and Structures 7 (1993) S. 661/687.

    Google Scholar 

  64. Baylac, G., D. Bai u. J. P. Gregoire: Study of flow and acoustic phenomena in a tube bank. Proc. UKAEA-NPL Int. Symp. on Vibration Problems in Industry. Keswick (Großbritannien) 1973. Ber. 219, 1973, S. 1/36.

    Google Scholar 

  65. Rae, G. J., u J. S. Wharmby: Strouhal numbers for in-line tube arrays. Proc. BHRA Int. Conf. on Flow Induced Vibrations. Bowness-on-Windermere (Großbritannien) 1987. Ber. E4, 1987, S. 233/242.

    Google Scholar 

  66. Clasen, P., u R. Gregorig: Ein Schwingungskriterium eines querangeströmten Rohres. Teil 4: Schwingversuche in einem fluchtenden Rohrbündel. Chem.-Ing.-Techn. 43 (1971) S. 982/985.

    Google Scholar 

  67. Grotz, B. J., u F. R. Arnold: Flow-induced vibrations in heat exchangers. Rep. Nr. 31, AD 104568. Dept. of Mech. Eng., Stanford Univ., Ca. (USA) 1956.

    Google Scholar 

  68. Pettigrew, M. J., u D. J. Gorman: Vibration of heat exchanger tube bundles in liquid and two-phase cross-flow. Flow-induced vibration design guidelines. Hrsg.: P. Y. Chen. ASME PVP, 52 (1981) S. 89/110.

    Google Scholar 

  69. Pettigrew, M. J.: Flow-induced vibration phenomena in nuclear power station components. Power Ind. Res. 1 (1981) S. 97/133.

    Google Scholar 

  70. Ziada, S., A. Oengören u. E. T. Bühlmann: On acoustical resonance in tube arrays. Part I: Experiments. J. Fluids and Structures 3 (1989) 3, S. 293/314.

    Google Scholar 

  71. Oengören, A., u S. Ziada: Vorticity shedding and acoustic resonance in an inline tube bundle. Part II: Acoustic resonance. J. Fluids and Structures 6 (1992) 3, S. 293/309.

    Google Scholar 

  72. Chen, Y. N.: Flow-induced vibration and noise in tube bank heat exchangers due to von Karman streets. ASME J. Engng. Ind. 90 (1968) S. 134/146.

    Google Scholar 

  73. Chen, Y. N., u W. C. Young: Damping capability of tube banks against vortex-excited sonic vibration. ASME J. Engng. Ind. 96 (1974) S. 1072/1075.

    Google Scholar 

  74. Fitzpatrick, J. A.: A design guide proposal for avoidance of acoustic resonances in in-line heat exchangers. ASME J. Vibration, Acoustics Stress and Reliability in Design 108 (1986) S. 296/300.

    Google Scholar 

  75. Ziada, S.A. Oengören u. E. T. Bühlmann: On acoustical resonance in tube arrays. Part II: Damping criteria. J. Fluids and Structures 3 (1989) 3, S. 315/324.

    Google Scholar 

  76. Eisinger, F. L., R. E. Sullivan u. J. T. Francis: A review of acoustic vibration criteria compared to inservice experience with steam generator in-line tube banks. ASME Int. Symp. on Flow-Induced Vibration and Noise. Anaheim, Ca. (USA). 4 (1992) S. 81/95.

    Google Scholar 

  77. Eisinger, F. L., J. T. Francis u. R. E. Sullivan: Prediction of acoustic vibration in steam generator and heat exchanger tube banks. ASME PVP Conf. on Flow-Induced Vibration. Minneapolis, Minn. (USA). 273 (1994) S. 67/83.

    Google Scholar 

  78. Connors, H. J.: Fluidelastic vibration of heat exchanger tube arrays. ASME J. Mech. Design 100 (1978) S. 347/353.

    Google Scholar 

  79. Goyder, H. G. D.: A practical method for assessing tube vibration in heat exchangers. ASME Int. Symp. on Flow-Induced Vibration and Noise. Anaheim, Ca. (USA). (HTD-Bd. 230-NE-Bd. 9). 1 (1992) S. 237/260.

    Google Scholar 

  80. Mohr, U., u H. Gelbe: Influence of the geometry in tube bundle heat exchangers on the velocity distribution and the vibration excitation. ASME PVP Conf. on Flow-Induced Vibration. Boston, Mass. (USA). 389 (1999) S. 1/8 (s. auch Mohr, U. u. H. Gelbe: Velocity distribution and vibration excitation in tube bundle heat exchangers. Int. J. Thermal Sci. 39 (2000) S. 414/421).

    Google Scholar 

  81. Mohr, U.: Einfluß von Geometrie und Geschwindigkeitsverteilung auf die Schwingungsanregung von Rohrbündel-Wärmeübertragern. Fortschr.-Ber. VDI, Reihe 11, Nr. 304. Düsseldorf: VDI-Verl. 2001

    Google Scholar 

  82. Mohr, U., K. Schröder u. H. Gelbe: The effect of approach flow direction on the fluid-elastic instability of tubes in triangular tube arrays. Proc. 7th Int. Conf. on Flow-Induced Vibration. FIV 2000, Luzern (Schweiz) 2000. Hrsg.: S. Ziada, T. Staubli. Rotterdam (Niederlande): Balkema 2000, S. 481/488.

    Google Scholar 

  83. Leyh, T.: Strömungsinduzierte Rohrbündelschwingungen in einem gasdurchströmten realen Wärmeübertrager. Diss. TU Berlin 1993.

    Google Scholar 

  84. Pettigrew, M. J., M. Yetisir et al.: Prediction of vibration and fretting-wear damage: An energy approach. ASME PVP Conf. on Flow-Induced Vibration. Boston, Mass. (USA) 1999. 389 (1999) S. 283/290 (s. auch S. 273/282).

    Google Scholar 

  85. Steinhagen, R., Müller-Steinhagen, H. and Maani K.: Problems and Costs Due to Heat Exchanger Fouling in New Zealand Industries. Heat Transfer Engineering (1992), Vol. 14, No. 1, S. 19/30.

    Google Scholar 

  86. Thackery, P. A.: The Cost of Fouling in Heat Exchanger Plant. Effluent and Water Treatment Journal (1980), S. 111/15.

    Google Scholar 

  87. Garrett-Price, B. A. et al.: Fouling of Heat Exchangers — Characteristics, Costs, Prevention, Control and Removal. Noyes Publications (1985), Park Ridge, New Jersey.

    Google Scholar 

  88. Steinhagen, R., H. M. Müller-Steinhagen u. K. Maani: Heat Exchanger Applications, Fouling Problems and Fouling Costs in New Zealand Industries. Ministry of Commerce Report RD 8829 (1990), S. 1/116.

    Google Scholar 

  89. Taborek, J.: private communications (1987).

    Google Scholar 

  90. Epstein, N.: Thinking about Heat Transfer Fouling — A 5 × 5 Matrix. Heat Transfer Engineering (1983), Vol. 4, No. 1, S. 43/56.

    CAS  Google Scholar 

  91. Taborek, J., T. Aoki et al.: Fouling — The Major Unresolved Problem in Heat Transfer. Chem. Eng. Prog. (1972), Vol. 68, No. 2, S. 59/67, No. 7, S. 69/78.

    CAS  Google Scholar 

  92. Morse, R. W., u J. G. Knudsen: Effect of Alkalinity on the Scaling of Simulated Cooling Tower Water. Can. J. Chem. Eng. (1977), Vol. 55, S. 272/78.

    CAS  Google Scholar 

  93. Branch, C. A. and Müller-Steinhagen: Fouling During Heat Transfer to Kraft Pulp Black Liquor. Part I: Experimental Results. Part II: Analysis of Deposits and Modelling. APPI-TA Journal (1995), Vol. 48, No. 4, S. 279/283.

    CAS  Google Scholar 

  94. Bott, T R., u J. S. Gudmundsson: Rippled Silica Deposits in Heat Exchanger Tubes. Proc. 6th Int. Heat Transfer. Conf. (1978), Vol. 4, S. 373/78.

    Google Scholar 

  95. Kern, D. Q., u R. A. Seaton: A Theoretical Analysis of Thermal Surface Fouling. Brit. Chem. Eng. (1959), Vol. 4, No. 5, S. 258/62.

    Google Scholar 

  96. Cleaver, J. B., u B. Yates: The Effect of Re-Entrainment on Particle Deposition. Chem. Eng. Sci. (1976), Vol. 31, S. 147/51.

    CAS  Google Scholar 

  97. Hasson, D.: Precipitation Fouling. Publ. in Fouling of Heat Transfer Equipment (1981) Herausgeber E. F. C. Somerscales und J. G. Knudsen, Hemisphere Publ. Corp., Washington.

    Google Scholar 

  98. Bowen, B. D., u N. Epstein: Fine Particle Deposition in Smooth Parallel-Plate Channels. J. Colloid Interface Sci. (1979), Vol. 72, S. 87/91.

    Google Scholar 

  99. Müller-Steinhagen, H. M., u F. Reif: Thermische und hydrodynamische Einflüsse auf die Ablagerung suspendierter Partikeln an beheizten Flächen. VDI Progress Report, 19, S. 1/194(1990).

    Google Scholar 

  100. Taborek, J., T. Aoki et al.: Predictive Methods for Fouling Behaviour. Chem Eng. Progr. (1972), Vol. 68, No. 7, S. 69/72.

    CAS  Google Scholar 

  101. Watkinson, A. P., u N. Epstein: Gas Oil Fouling in a Sensible Heat Exchanger. Chem. Eng. Prog. Series (1969), Vol. 65, No. 92, S. 84/90.

    CAS  Google Scholar 

  102. Knudsen, J. G: Fouling in Heat Exchangers. Kap. 3.17, Heat Exchanger Design Handbook (1983), Hemisphere Publ. Corp., Washington.

    Google Scholar 

  103. Bohnet, M.: Fouling von Wärmeübertragungsflächen. Chem. Ing. Tech. (1985), Vol. 57, No. 1, S. 24/36.

    CAS  Google Scholar 

  104. Epstein, N.: General Thermal Fouling Models. In Fouling von Wärmeübertragungsflächen, GVC Diskussionstagung München (1990).

    Google Scholar 

  105. Watkinson, A. P., u TV. Epstein: Particulate Fouling of Sensible Heat Exchangers. Proc. 4th Int. Heat Transf. Conf., Toronto (1970) HE 1.6.

    Google Scholar 

  106. Jamialahmadi, M., Müller-Steinhagen, H. und Robson, B.: Effect Of Process Parameters On Scale Formation From Spent Bayer Process Liquor. Part I: Experimental Observations. ALUMINIUM (1993), Vol. 69, S. 823/827.

    CAS  Google Scholar 

  107. Epstein, N.: Fouling in Heat Transfer Equipment. HTFS Seminar on Fouling, New Orleans (1986), S. 2/1/2/34.

    Google Scholar 

  108. Bohnet, M.: Investigation of Fouling Layer Growth by Crystallization. 41th Can. Chem. Eng. Conf. Vancouver, Canada (1991).

    Google Scholar 

  109. Krause, S.: Fouling an Wärmeübertragerflächen durch Kristallisation und Sedimentation. VDI-Forschungsheft No. 637 (1986).

    Google Scholar 

  110. Lalande, M., u F. Rene: Fouling By Milk And Dairy Product and Cleaning Of Heat Exchange Surfaces. Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).

    Google Scholar 

  111. Hussain, C. I., I. H. Newson u. T. R. Bott: Diffusion Controlled Deposition of Particulate Matter from Flowing Slurries. Proc. 8th Int. Heat Transfer Conf. (San Francisco, 1986), Vol. 5, S. 2573/79.

    Google Scholar 

  112. Thomas, D., u U. Grigull: Experimentelle Untersuchung über die Ablagerung von suspendiertem Magnetit bei Rohrströmungen in Dampferzeugern. Brennst.-Wärme-Kraft (1974), Vol. 26, No. 3, S. 109/15.

    CAS  Google Scholar 

  113. Hopkins, R. M., u N. Epstein: Fouling of Heated Stainless Steel Tubes With Ferric Oxide From Flowing Water Suspensions. Proc. 5th Int. Heat Transfer Conf. (Tokyo, 1974), Vol. 5, S. 180/84.

    CAS  Google Scholar 

  114. Melo, L., u J. D. Pinheiro: Fouling by Kaolin-Water Suspensions — Effect of the Flow Velocity and the Presence of Magnetite Particles. Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).

    Google Scholar 

  115. Müller-Steinhagen, H. M.: Partikelablagerung in Wärmeübertragern. In Fouling von Wärmeübertragungsflächen, GVC Diskussionstagung München (1990).

    Google Scholar 

  116. Süleyman, A., u D. Rosner: Prediction And Rational Correlation Of Thermophoretically Reduced Particle Mass Transfer To Hot Surfaces Across Laminar or Turbulent Forced-Convection Gas Boundary Layers. Chem. Eng. Commun. (1986), Vol. 44, S. 107/19.

    Google Scholar 

  117. Kent, C. A.: Biological Fouling — Basic Science and Models. Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).

    Google Scholar 

  118. Somerscales, E. F. C.: Corrosion Fouling — Liquid Side. Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).

    Google Scholar 

  119. Charlesworth, D. H.: The Deposition of Corrosion Products In Boiling Water Systems. Chem. Eng. Progr. Symp. Series (1970), Vol. 66, No. 104, S. 21.

    CAS  Google Scholar 

  120. Bartlett, T., Müller-Steinhagen, H. und Jamialahmadi, M.: Scale Formation on a Boiler Tube Bundle. Proceedings 4th UK National Conference on Heat Transfer, IMechE Conference Transactions, S. 55/59 (1995).

    Google Scholar 

  121. Kot, A. A.: Water Treatment in Nuclear Power Plants. Atomizdat, Moscow (1964), (AEC-tr-6629, 1966).

    Google Scholar 

  122. Marginal, T.: T. B. M. Technologies, 788 Cornwall Drive, State College, PA 16801, USA. Siehe auch: Proc. NATO ASI on Advances in Fouling Science and Technology, Portugal. Martinus Nijhoff Publ. (1988).

    Google Scholar 

  123. Standards of the Tubular Exchanger Manufacturers Association (1978), 6th ed., TEMA, New York.

    Google Scholar 

  124. Chenoweth, J.: Final Report of the HTRI-TEMA Joint Committee to Review the Fouling Section of the TEMA Standards. Heat Transfer Engineering, Vol. 11, No. 1 (1990), S. 73/107.

    Google Scholar 

  125. Moore, J. A.: Fintubes foil fouling for scaling services. Chemical Processing (August 1980).

    Google Scholar 

  126. Watkinson, A. P.: Fouling of Augmented Heat Transfer Tubes. Heat Transfer Engineering, Vol. 11, No. 3 (1990) S. 57/65.

    CAS  Google Scholar 

  127. Freeman, W., J. Middis u. H. M. Müller-Steinhagen: Influence of Augmented Surfaces and of Surface Finish on-Particulate Fouling in Double Pipe Heat Exchangers. Chem. Eng. Process. Vol. 27 (1990), S. 1/11.

    CAS  Google Scholar 

  128. Weierman, R. C.: Design of Heat Transfer Equipment for Gas-Side Fouling Service. In Workshop on an Assesment of Gas-Side Fouling in Fossil Fuel Exhaust Environments. Herausgeber W. J. Marner und R. L. Webb. Publikation 82/67, Jet Propulsion Laboratory, California Institue of Technology, Pasadena, California (1982).

    Google Scholar 

  129. Kollbach, J., W. Dahm u. R. Rautenbach: Continuous cleaning of heat exchangers with recirculating fluidized bed. Heat Transfer Engineering, vol. 8, no. 4, pp. 26/32, 1987.

    CAS  Google Scholar 

  130. Klaren, D. G.: The fluid bed heat exchanger: Principles and modes of operation and heat transfer results under severe fouling conditions. Fouling Prev. Res. Dig., vol. 5, No. 1, March 1983.

    Google Scholar 

  131. Jamialahmadi, M., B. Stellingwerf, H. Müller-Steinhagen u. B. Robson: Heat Transfer to Solid-Liquid Fluidized Beds in Annuli. Chem. Eng. Process. (1992).

    Google Scholar 

  132. Wirbelschicht-Wärmeaustauscher. SGL Carbon, Meitingen, Deutschland (1992).

    Google Scholar 

  133. Novak, L.: Comparison of the Rhine River and the Öresund Sea Water Fouling and Its Removal by Chlorination. Journal of Heat Transfer (1982), Vol. 104, S. 663/70.

    CAS  Google Scholar 

  134. Cross, P. H.: Preventing Fouling in Plate Heat Exchangers. Chemical Engineering (1979), S. 87/90.

    Google Scholar 

  135. Cooper, A., J. W. Suitor u. J. D. Usher: Cooling Water Fouling in Plate Heat Exchangers. heat transfer engineering (1980), Vol. l, No. 1, S. 50/55.

    Google Scholar 

  136. Branch, C. A., H. Müller-Steinhagen u. F. Seyfried: Heat Transfer to Kraft Black Liquor in Plate Heat Exchangers. APPITA J. Vol. 44, No. 4 (1991), S. 270/72.

    CAS  Google Scholar 

  137. Gilmour, C. H.: No Fooling — No Fouling. Chemical Engineering Progress (1965), Vol. 61, No. 7, S. 49/54.

    Google Scholar 

  138. Somerscales, E. F. C., u M. Kassemi: Fouling Due To In-Situ Corrosion Products. ASME 22nd National Heat Transfer Conf. (1984), HTD-Vol. 35, S. 1.

    Google Scholar 

  139. Goodstine, S. L., u J. J. Kurpen: Corrosion and Corrosion Product Control in the Utility Boiler Turbine Cycle. Mater. Perf. (1974), Vol. 13, No. 1, S. 31.

    CAS  Google Scholar 

  140. Simon, D. E.: Feedwater Quality in Modern Industrial Boilers — A Consensus of Proper Current Operating Practices. 36th Annual Water Conference (1975), Pittsburgh, Pa.

    Google Scholar 

  141. Wasservorschriften für Wasserrohrkessel. Mitteilungen VGB 49, H. 3 (1969) S. 215/17.

    Google Scholar 

  142. Macbeth, R. V., R. Trenberth, u R. W. Wood: An Investigation into the Effect of „Crud“ Deposits on Surface Temperature, Dry-Out and Pressure Drop, With Forced Convection Boiling of Water at 69 Bar in an Annular Test Section. AEEW-R 705, 1971.

    Google Scholar 

  143. Macbeth, R. V.: The Effect of „Crud“ Deposits on Frictional Pressure Drop in a Boiling Channel. AEEW — R 767, 1972.

    Google Scholar 

  144. Macbeth, R. V.: Boiling on Surfaces Overlayed With a Porous Deposit — Heat Transfer Rates Obtainable by Capillary Action. AEEW — R 711, 1971.

    Google Scholar 

  145. Païen, J. W.: Shell and Tube Re-Boilers. Sect. 3.7.8, Heat Exchanger Design Handbook. Hemisphere Publ. Corp. (1983).

    Google Scholar 

  146. Ahlström Corp., Process Equipment Works, Varkaus 20, Finnland

    Google Scholar 

  147. Müller-Steinhagen, H.: Wärmeübergang und Fouling beim Strömungssieden von Argon und Stickstoff in horizontalen Rohren. Fortschr.-Ber. VDI-Z (1984), Reihe 6, No. 143.

    Google Scholar 

  148. Müller-Steinhagen, H. M.: Fouling Phenomena During Boiling of Cryogenic Liquids. Cryogenics, Vol. 28 (1988), S. 406/08.

    Google Scholar 

  149. Palm, B.: Enhancement of Boiling Heat Transfer by Aid of Perforated Metal Foils. Dissertation, Department of Applied Thermodynamics and Refrigeration, The Royal Institute of Technology, Stockholm (1991)

    Google Scholar 

  150. Somerscales, E. F. C., u L. A. Curcio: Effect of calcium sulphate on pool boiling of enhanced surfaces. ASME WAM, Dallas, Texas (1990).

    Google Scholar 

  151. Jamialahmadi, M., u H. M. Müller-Steinhagen: Scale Formation During Nucleate Boiling — A Review. Corrosion Reviews (1993).

    Google Scholar 

  152. Gottzmann, C. F., P. S. O’Neill u. P. E. Minton: Field experience with high efficiency heat exchangers. 74th AIChE meeting, New Orleans (1973).

    Google Scholar 

  153. O’Neill, P. S.: User Manual — High Flux Horizontal Heat Exchanger Design Program, non-confidential version. Union Carbide Corporation (1977).

    Google Scholar 

  154. Martin, H.: Wärmeübertrager. Georg Thieme Verlag (1988).

    Google Scholar 

  155. Chenoweth, J.: General Design Of Heat Exchangers For Fouling Conditions. In Fouling Science and Technology, NATO ASI Series 145 (1988), S. 477/94.

    CAS  Google Scholar 

  156. Coulson, J. M., J. F. Richardson u. R. K. Sinnott: Chemical Engineering, Volume 6. Pergamon Press (1985).

    Google Scholar 

  157. Epstein, N.: Fouling in Heat Exchangers. Publ. in Heat Exchanger Theory and Practice (1983). Herausgeber J. Taborek und G. Hewitt, McGraw-Hill.

    Google Scholar 

  158. Paikert, P.: Verschmutzung von Kondensatoren und Kühltürmen. GVC Weihnachtstagung (1983), S. 371/390.

    Google Scholar 

  159. Betz Laboratories, Inc.: Handbook of Industrial Water Conditioning. 7. Auflage (1976), Trevose, Pa., S. 24/29.

    Google Scholar 

  160. Drew Chemical Corporation: Principles of Industrial Water Treatment. 1. Auflage (1977), Boonton N.J., S. 99/103.

    Google Scholar 

  161. Nalco Chemical Comp.: Nalco Water Handbook. McGraw-Hill (1979), 1. Auflage.

    Google Scholar 

  162. Dubbel, Taschenbuch für den Maschinenbau. 13. Auflage (1974), zweiter Band, S. 87/94.

    Google Scholar 

  163. Harris, A., u A. Marshall: The Evaluation of Scale Control Additives. Conf. on Progress in the Prevention of Fouling in Industrial Plant. Univ. Nottingham (1981).

    Google Scholar 

  164. Krisher, A. S.: Raw Water Treatment in the CPI. Chemical Engineering (1978), August 28, S. 79/98.

    Google Scholar 

  165. Dubkin, L., u K. E. Fulks: The Effect of Water Chemistry on Iron Dispersant Performance. Presented at Corrosion-84, New Orleans, Louisiana (1984).

    Google Scholar 

  166. Miller, P. C., u T. R. Bott: The Removal of Biological Films Using Sodium Hypochloride. Int. Chem. Eng. Conf. on Fouling Science or Art? (1979), Surrey University, Guildford, England.

    Google Scholar 

  167. Birchall, G. A.: Achieving Microbiolocal Controll in Open Recirculating Cooling Systems. Conference on Progress in the Prevention of Fouling in Industrial Plant (1981). Universität Nottingham.

    Google Scholar 

  168. Grier, J. C., u R. J. Christensen: Microbiological Control in Alkaline Cooling Water Systems. Presented at the National Association of Corrosion Engineers Annual Meeting (1975), Toronto, Canada.

    Google Scholar 

  169. Waite, T. D., u J. R. Fagan: Summary of Biofouling Control Alternatives. In Condenser Biofouling Control, Herausgeber J. Garey, Ann Arbor Science (1980).

    Google Scholar 

  170. Grade, R., u B. M. Thomas: The Influence and Control of Algae in Industrial Cooling Systems. Int. Chem. Eng. Conf. on Fouling Science or Art? (1979), Surrey University, Guildford, England.

    Google Scholar 

  171. Roe, F. L., N. Zelver u. W. G. Characklis: Monitoring of Fouling Deposits — A Key to Heat Exchanger Management. InTech (1985), S. 91.

    Google Scholar 

  172. Knudsen, J. G., H.-Y. Jou u. K. W. Herman: Heat Transfer Characteristics of an Electrically Heated Annular Test Section for Determining Fouling Resistances. Drew Ind. Div. (1985), Report CWT-TP-18.

    Google Scholar 

  173. Tubec Tubes. AST, Avesta Sandvik Tube AB, Helmond, Holland

    Google Scholar 

  174. Ellis, S. R. M., M. J. Gough u. J. V. Rogers: A Novel Insert for Improving Heat Exchanger Performance, University of New South Wales, Sydney (1985)

    Google Scholar 

  175. Someah, K: On-Line Tube Cleaning — The Basics. Chem. Eng. Progress, S. 39/45 (Juli 1992)

    Google Scholar 

  176. KALVO Vogler GmbH: Automatisches Reinigungssystem für Kondensatoren und Röhrenwärmeaustauscher.

    Google Scholar 

  177. Eimer, K.: Recommendations for the Optimum Cleaning Frequency of the Taprogge Tube Cleaning System. Taprogge Technical Report 85/26 (1985).

    Google Scholar 

  178. Kinson, G., u W. Price: Getting the Most Out of Cooling Water. Chem. Eng. 91, No. 1, pp. 22/25 (1984).

    Google Scholar 

  179. Donaldson, J., u S. Grimes: Lifting the Scale from Our Pipes. New Scientist, Vol. 18, pp. 43/46 (1988).

    Google Scholar 

  180. Hasson, D., u D. Bramson: Effectiveness of Magnetic water Treatment in Suppressing CaCO3 Scale Deposition. Ind. Eng. Chem. Process Des. Dev., Vol. 24, pp. 588/92 (1985).

    CAS  Google Scholar 

  181. Söhnel, O., u J. Mullin: Some Comments on the Influence of a Magnetic Field on Crystalline Scale Formation. Chemistry and Industry, Vol. 6, pp. 356/58 (1988).

    Google Scholar 

  182. Limpert, G. J. C., u J. L. Raber: Test of Non-Chemical Scale Control Devices in a Once Through System. Corrosion 85, Paper 250 (1985).

    Google Scholar 

  183. Karabelas, A. J.: personal communications (1988).

    Google Scholar 

  184. Magnets attract positive results. Australian Dairy Foods, Vol. 13, No. 1,1991

    Google Scholar 

  185. Ashley, M. J.: Preventing deposition on heat exchange surfaces with ultrasound. Ultrasonics, S. 215/21 (1974).

    Google Scholar 

  186. Taylor, R. E., u J. W. Collins: Chemical Processing 29, No. 8 (1967).

    Google Scholar 

  187. Taprogge Report 84/15: Test of Taprogge Condenser Tube Cleaning System to Prevent Silica and Calcium Carbonate Scaling. Taprogge GmbH (1984).

    Google Scholar 

  188. French, M. A.: Chemical Cleaning in Practice. Conference on Progress in the Prevention of Fouling in Industrial Plant (1981). Universität Nottingham.

    Google Scholar 

  189. Roebuck, A. H., u C. A. Bennett: Heat Transfer Payback Is A Key To Chemical Cleaning Choice. The Oil & Gas Journal, No. 9, S. 93/96 (1977).

    Google Scholar 

  190. Hollands, H. F.: In-Service Cleaning of Boilers Using Chelants. Conference on Progress in the Prevention of Fouling in Industrial Plant (1981). Universität Nottingham.

    Google Scholar 

  191. Axsom, J. F.: Heat Exchanger Clean Method Cuts Cost. The Oil & Gas Journal No. 6 (1977), S. 71/72.

    Google Scholar 

  192. Roebuck, A. H: New Materials Make Chemical Heat Exchanger Cleaning Safer. The Oil & Gas Journal No. 12 (1978), S. 70/74.

    Google Scholar 

  193. CONCO Systems Inc., Verona, PA, U.S.A.

    Google Scholar 

  194. Hovland, A. W.: Effective Condenser Cleaning Improves System Heat Rate. Power Engineering (1978), S. 49/50.

    Google Scholar 

  195. Cleaning Condenser Tubes Cuts Coal Costs in Energy Focus, Department of Minerals & Energy, NSW, Australia (1989).

    Google Scholar 

  196. Regan, T J.: Oil Refinery Saves $ 5000-week Cleaning Own Heat Exchanger Bundles. Chem. Process. No. 10 (1983).

    Google Scholar 

  197. Knudsen, J. G.: Apparatus and Techniques for Measurement of Fouling of Heat Transfer Surfaces. In Fouling of Heat Transfer Equipment (1981), Herausgeber E. F. C. Somerscales und J. G. Knudsen, Hemisphere Publ. Corp., Washington.

    Google Scholar 

  198. Polt, A.: BASF AG, Ludwigshafen, persönliche Mitteilungen (1993).

    Google Scholar 

Download references

Author information

Consortia

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verein Deutscher Ingenieure, VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC). (2002). Konstruktive Hinweise für den Bau von Wärmeübertragern. In: VDI-Wärmeatlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10743-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10743-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10744-7

  • Online ISBN: 978-3-662-10743-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics