Changes in the Antarctic Ice Sheet Mass and the Instability of the Earth’s Rotation over the Last 110 Years

  • N. S. Sidorenkov
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)


The redistribution of water masses on the Earth entails changes in the components of the Earth’s inertia tensor and causes the motion of poles and changes of the Earth’s rotation speed.

N.S. Sidorenkov (1982) has deduced equations which connect the fluctuations of the World Ocean water mass ζ O or the ice mass of Antarctica ζ A , Greenland ζ G , and “the rest part of land” ζ C with the parameters of the Earth’s rotation (coordinates of the North Pole V 1, V 2 and velocity of rotation V 3).

Presently, parameters V 1, V 2, and V 3 of the Earth’s rotation are measured with a very high accuracy and can be used for the calculation of water exchange (values ζ O , ζ A G , and ζ C ).

According to this idea, we have calculated the unknown changes of the specific amount of water in the World Ocean ζ O and the accumulation of ice in Antarctica ζ A , Greenland ζ G , and “the rest part of land” ζ C for 1891–2000 with a one-year discretion.

The computed (theoretical) series ζ O , ζ A , ζ G are compared with the empirical values ζ O , ζ A , ζ G . A close correlation between theoretical and empirical series ζ A for Antarctica is revealed. The possibility of using the theoretical series for the analysis of temporal variations in the geoid parameters is found. It has been estimated that because of the decadal fluctuations of the Antarctic ice sheet mass, the polar diameter of the geoid varied within ±25 cm over the last century.


Antarctic and Greenland ice sheets sea level accumulation of ice via precipitation decade instability of the Earth’s rotation geoid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bryazgin N.N. (1990). Atmoshpheric precepitation in Antarctic and theirs multi-year change. In collected articles “Meteorological Research in Antarctic”. Part 1, Leningrad. Gidrometeoizdat. pp. 30–34.Google Scholar
  2. Fedorov E.P., Korsun A.A., Maior S.P., Panchenko N.I.,Taradee B.K., Yatzkiv Ya.S., (1972). Dvizenie poljusa Zemli s 1890 po 1969. Izdatelstvo “Naukova Dumka”, Kiev, 264 pp.Google Scholar
  3. Fowler, C.M.R. (1996). The Solid Earth: An Introduction to Global Geophysics. Cambridge University Press, New York.Google Scholar
  4. Klique R.K., (1980). Uroven okeana v geologicheskom proshlom. Nauka, Moskva, 110 pp.Google Scholar
  5. Munk, W.H., G.J.F. MacDonald. 1960. The rotation of the Earth. Cambridge University Press. CambridgeGoogle Scholar
  6. Sidorenkov N.S. (1980). Irregularites of the Earth’s rotation as possible indices of global water exchange. Soviet Meteorology and Hydrology, No. 1, 39–45.Google Scholar
  7. Sidorenkov N.S. (1982). Global water exchanges and irregularities of Earth Rotation. Vodnye Resursy (Water Resources) No 3, 39–46.Google Scholar
  8. Sidorenkov N.S. (1987) The nature of seasonal and interannual variations of the Earth’s rotation. //Proc. Int. Symp. “Figure and Dynamics of the Earth, Moon, and Planets.” Prague. 1987. P. 947–960.Google Scholar
  9. Sidorenkov N.S. (2002). Physics of the Earth’s rotation instabilities. Nauka, Publishing Company Fizmatlit, Moscow. 384 p.Google Scholar
  10. Vondrak J. (1999). Earth rotation parameters 1899.7–1992.0 after reanalysis within the Hipparcos frame. //Surveys in Geophysics. 1999. Vol. 20. pp. 169–195.CrossRefGoogle Scholar
  11. Yatzkiv Ya.S., Mironov N.T., Korsun A.A., Taradii V.K., (1976). Dvizenie poljusov i neravnomernost vrachenija Zemli. “Astronomija” (“Itogi nauki i techniki”), Vol. 12 (chasti I, H). VIVITI. Moscow.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • N. S. Sidorenkov
    • 1
  1. 1.Hydrometcenter of RussiaMoscowRussia

Personalised recommendations