SAR interferometry for deformation control

  • B. Crippa
  • M. Crosetto
  • M. Blázquez
  • R. Barzaghi
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)


A quantitative control of deformations using the differential interferometric SAR (DInSAR) technique may be achieved when multiple observations and suitable modelling and analysis tools are employed. The paper begins with a description of the main characteristics of the DInSAR data. Then, it discusses a new modelling and filtering strategy, which takes advantage of the specific properties of the DInSAR observations. The core of the procedure is the least squares collocation filtering and prediction, which exploits the correlation properties of the DInSAR data. The proposed procedure was tested on simulated DInSAR data that reproduce the characteristics of a small scale subsidence, and that include the main components of the interferometric data: the atmospheric contribution, the phase noise component, and the outliers due to the unwrapping related errors.


SAR monitoring modeling estimation simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baarda, W. (1968). A testing procedure for use in geodetic networks. Netherlands Geodetic Commission — Publications on Geodesy, Vol. 2, No. 5, Delft, Holland.Google Scholar
  2. Berardino, P., G. Fornaro, A. Fusco, D. Galluzzo, R. Lanari, E. Sansosti, and S. Usai (2001). A new approach for analysing the temporal evolution of earth surface deformations based on the combination of DIFSAR interferograms. Proc. of IGARSS 2001, Sidney, Australia.Google Scholar
  3. Crosetto, M., C.C. Tscherning, B. Crippa, and M. Castillo (2002a). Subsidence monitoring using SAR interferometry: reduction of the atmospheric effects using stochastic filtering. Geophysical Research Letters, Vol. 29, No. 9, pp. 26–29.CrossRefGoogle Scholar
  4. Crosetto, M., M. Castillo, and R. Arbiol (2002b). Urban subsidence monitoring using radar interferometry: Algorithms and validation. Photogramm Eng Rem Sens (in press).Google Scholar
  5. Ferretti, A., C. Prati, and F. Rocca (2000). Non-linear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE TGRS, Vol. 38, No. 5, pp. 2202–2212.Google Scholar
  6. Hanssen, R. (2001). Radar interferometry. Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
  7. Moritz, H. (1978). Least-squares collocation. Rev. Geophys. Space Phys., Vol. 16, pp. 421–430.CrossRefGoogle Scholar
  8. Strozzi, T., U. Wegmüller, L. Tosi, G. Bitelli, and V. Spreckels (2001). Land subsidence monitoring with differential SAR interferometry. Photogramm Eng Rem Sens, Vol. 67, No. 11, pp. 1261–1270.Google Scholar
  9. Williams, S., Y. Bock, and P. Fang (1998). Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. Journal of Geophysical Research, Vol. 103, B11, pp. 27051–27067.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • B. Crippa
    • 1
  • M. Crosetto
    • 2
  • M. Blázquez
    • 2
  • R. Barzaghi
    • 3
  1. 1.Department of Earth SciencesUniversity of MilanMilanItaly
  2. 2.Institute of GeomaticsCampus de CastelldefelsCastelldefels (Barcelona)Spain
  3. 3.DIIARPolitecnico di MilanoMilanItaly

Personalised recommendations