Estimating Covariance Parameters in Gravity Downward Continuation

  • J. Kusche
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)


We discuss same concepts related to the estimation of covariance parameters in the numerical treatment of gravity downward continuation. We aim explicitly at the determination of weighting factors, regularization parameters, and residual data correlations in the inversion of satellite gravity data for spherical harmonic coefficients. Special attention is given to the efficient treatment of large—sized data sets, having in mind data reduction and model validation fore. g. the GOCE mission, and to the derivation of probability density functions.


Covariance parameters variance components downward continuation satellite gravity data pdf’s 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arsenin VY, Krianev AV (1992). Generalized maximum likelihood method and its application for solving ill-posed problems. In Tikhonov A: Ill-Posed Problems in Natural Sciences, pp. 3–12, TVP Science Publishers, MoscowGoogle Scholar
  2. ESA (1999). Gravity Field and Steady-State Ocean Circulation Mission. ESA Publications Divisions SP-1233(1), ESTEC, NoordwijkGoogle Scholar
  3. Förstner W (1979). Ein Verfahren zur Schätzung von Varianz— und Kovarianzkomponenten. Allgemeine Vermessungs—Nachrichten 86:446–453Google Scholar
  4. Grafarend, E, Kleusberg A (1980). Expectation and variance component estimation of multivariate gyrotheodolite observations I. Allgemeine VermessungsNachrichten 87: 129–137Google Scholar
  5. Klees R, Ditmer P, Kusche J (this volume). Numerical techniques for large—scale least—squares problems with applications to GOCE.Google Scholar
  6. Koch K—R (1990). Bayesian Inference with Geodetic Applications. Springer, BerlinGoogle Scholar
  7. Koch K—R, Kusche J (2002). Regularization of geopotential determination from satellite data by variance components. Journal of Geodesy, 76: 259–268Google Scholar
  8. Kusche J (2003). A Monte—Carlo technique for weight estimation in satellite geodesy. Journal of Geodesy, 76:641652Google Scholar
  9. Lehmann R (1996). Information measures for global geopotential models. Journal of Geodesy, 70:342–348Google Scholar
  10. Ou Z, Koch K—R (1994). Analytical expressions for Bayes estimates of variance components. manuscripta geodetica 19:284–293Google Scholar
  11. Rao CR and Kleffe J (1988). Estimation of Variance Components and Applications. North—Holland, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • J. Kusche
    • 1
  1. 1.Department of Physical, Geometrical, and Space GeodesyTU DelftDelftThe Netherlands

Personalised recommendations