Advertisement

Gravity Field Variability, the Geoid, and Ocean Dynamics

  • F. Condi
  • C. Wunsch
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)

Abstract

With the advent of accurate satellite altimetry, physical oceanography and geodesy have come to have many overlapping problems. The most fundamental of these problems concerns the detailed determination of the geoid. This gravitational equipotential of the earth is central to a description of the solid earth, and appears as the principle reference surface for computing oceanic currents. From the oceanographer’s point of view, knowledge of the sea surface elevation relative to the geoid determines the absolute circulation of the ocean. Great progress has occurred in recent years in determining the geoid with much improved accuracy, although much remains to be done for the result to be fully useful for oceanographic purposes. The possibility of measurement of the earth’s time variable gravity field and the very high accuracies and precisions which appear possible, raise a myriad of new and interesting challenges for understanding and using the measurements. This present paper summarizes some of the work we have performed (Condi and Wunsch (2003)) in exploring the idea of measuring bottom pressure changes from space, and how these data might be used, but with particular attention paid to basic concepts in ocean dynamics and errors in model approximations.

Keywords

Ocean dynamics geoid bottom pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, W., W. Munk, F. Snodgrass, B. Zetler, and H. Mofjeld (1975). MODE bottom pressure experiment. J. Phys. Ocean., 5, pp. 75–85.CrossRefGoogle Scholar
  2. Condi, F., and C. Wunsch (2003). Measuring Gravity Field Variability, the Geoid, Ocean Bottom Pressure Fluctuations, and Their Dynamical Implications. J.Geophys. Res. (in press).Google Scholar
  3. Heiskanen, W. and H. Moritz (1967). Physical Geodesy. W. H. Freeman, San Francisco, 364 pp.Google Scholar
  4. Lambeck, K (1988). Geophysical Geodesy. Oxford, New York, 718 pp.Google Scholar
  5. Lanczos, C. (1961). Linear Differential Operators. D. Van Nostrand, New York, 564 pp.Google Scholar
  6. Lemoine, F.G., et al. (1998). The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report, NASA/TP-1998–206861.Google Scholar
  7. Luther, D.S., A. D. Chave, J. H. Filloux, and P. F. Spain (1990). Evidence for local and nonlocal barotropic responses to atmospheric forcing during BEMPEX, Geophys. Res. Lett., 17, pp. 949–952.CrossRefGoogle Scholar
  8. Marshall, J., C. Hill, L. Perelman, and A. Adcroft. (1997). Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, pp. 5733–52.CrossRefGoogle Scholar
  9. Nerem R. S. (1995). Measuring global mean sea level variations using TOPEX/POSEIDON altimeter data. J. Geophys. Res., 100, C12, pp. 25135–25151.CrossRefGoogle Scholar
  10. Pedlosky, J. (1987). Geophysical Fluid Dynamics, 2 nd ed., Springer-Verlag, New York, 710 pp.CrossRefGoogle Scholar
  11. Phillips, N. (1966). The equations of motion for a shallow rotating atmosphere and the “traditional approximation”. J. Atmos. Sci., 23, pp. 626–628.CrossRefGoogle Scholar
  12. Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. N. Hill, and J. Marshall (2003). Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data, J. Geophys. Res., 108 (C1), 3007, doi: 10.1029/2001JC001115CrossRefGoogle Scholar
  13. Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, and J. Marshall (2002). The global ocean state during 1992–1997, estimated from ocean observations and a general circulation model: Part I: Methodology and Estimated State. J. Geophys. Res., 107(C9)3118, doi:10.1029/2001 JC0008 8 8.Google Scholar
  14. Stammer, D., C. Wunsch, and R. Ponte (2000). De-aliasing of Global High Frequency Barotropic Motions in Altimeter Observations. Geophys. Res. Let., 27, pp. 117578.Google Scholar
  15. Tapley, B., and C. Reigber (2001). The GRACE mission: status and future plans. EOS. Trans. AGU,82(47), Abstract G41C-02.Google Scholar
  16. Tierney, C., J. Wahr, F. Bryan, and V. Zlotnicki (2000). Short-period oceanic circulation: implications for satellite altimetry. Geophys. Res. Lett, 27, pp. 1255–58.CrossRefGoogle Scholar
  17. Wahr, J., M. Molenaar, and F. Bryan (1998). Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103, pp. 30205–229.CrossRefGoogle Scholar
  18. Weam., R., and D. J. Baker (1980). Bottom pressure measurements across the Antarctic Circumpolar Current and their relation to the wind, Deep Sea Res., 27A, pp. 875–888.CrossRefGoogle Scholar
  19. Woodworth, P.L., M. N. Tsimplis, R. A. Flather, and 1. Shennan (1999). A review of the trends observed in British Isles mean sea level data measured by tide gauges. Geophys. J. Int., 136, pp. 651–670.CrossRefGoogle Scholar
  20. Wunsch, C. (1996). The Ocean Circulation Inverse Problem, Cambridge Univ. Press, New York, 437 pp.Google Scholar
  21. Wunsch, C., and D. Stammer (1997). Atmospheric loading and the oceanic ‘inverted barometer’ effect. Rev.Geophys., 35, pp. 79–107.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • F. Condi
    • 1
  • C. Wunsch
    • 2
  1. 1.Center for Space ResearchUniversity of Texas at AustinUSA
  2. 2.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyUSA

Personalised recommendations