Angular Momentum in the Earth System

  • Richard S. Gross
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)


Angular momentum is a fundamental conserved property of dynamic systems. Applying the principle of conservation of angular momentum to the Earth allows the causes of the observed changes in the rotation of the solid Earth to be investigated. After reviewing the application of this principle to the study of observed changes in the Earth’s rotation, it is used to investigate the influence of the atmosphere and oceans on the Earth’s rotation during 1985–1995. Although atmospheric winds are the dominate process causing the Earth’s rate of rotation to change on time scales of a few days to a few years, the redistribution of mass within the atmosphere and oceans is shown to be important in causing polar motion on these time scales.


Earth rotation length-of-day polar motion atmospheric angular momentum oceanic angular momentum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brzezinski, A. (1992). Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem. manuscripta geodaetica, 17, pp. 3–20.Google Scholar
  2. Eubanks, T.M. (1993). Variations in the orientation of the Earth. In: Contributions of Space Geodesy to Geodynamics: Earth Dynamics. Smith, D.E., and D.L. Turcotte (eds). pp. 1–54, American Geophysical Union Geodynamics Series vol. 24, Washington, D.C.Google Scholar
  3. Greatbatch, R.J. (1994). A note on the representation of steric sea level in models that conserve volume rather than mass. J. Geophys. Res., 99, pp. 12767–12771.CrossRefGoogle Scholar
  4. Greatbatch, R.J., Y. Lu, and Y. Cai (2001). Relaxing the Boussinesq approximation in ocean circulation models. J. Atmos. Oceanic Technol., 18, pp. 1911–1923.CrossRefGoogle Scholar
  5. Gross, R.S. (1992). Correspondence between theory and observations of polar motion. Geophys. J. Int., 109, pp. 162–170.CrossRefGoogle Scholar
  6. Gross, R.S. (2001). Combinations of Earth orientation measurements: SPACE2000, COMB2000, and POLE2000. Jet Propulsion Laboratory Publ. 01–2, Pasadena, Calif.Google Scholar
  7. Gross, R.S., B.F. Chao, and S. Desai (1997). Effect of long-period ocean tides on the Earth’s polar motion. Prog. Oceanogr., 40, pp. 385–397.CrossRefGoogle Scholar
  8. Gross, R.S., I. Fukumori, and D. Menemenlis (2003). Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J. Geophys. Res.,in press.Google Scholar
  9. Hide, R. and J.O. Dickey (1991). Earth’s variable rotation. Science, 253, pp. 629–637.CrossRefGoogle Scholar
  10. Jackson, A., J. Bloxham, and D. Gubbins (1993). Time-dependent flow at the core surface and conservation of angular momentum in the coupled core-mantle system. In: Dynamics of the Earth’s Deep Interior and Earth Rotation. Le Mouël, J.-L., D.E. Smylie, and T. Herring (eds). pp. 97–107, American Geophysical Union Geophysical Monograph Series vol. 72, Washington, D.C.Google Scholar
  11. Johnson, T.J., C.R. Wilson, and B.F. Chao (1999). Oceanic angular momentum variability estimated from the Parallel Ocean Climate Model, 1988–1998, J. Geophys. Res., 104, pp. 25183–25195.CrossRefGoogle Scholar
  12. Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, A. Leetmaa, R. Reynolds, R. Jenne, and D. Joseph (1996). The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Met. Soc. 77, pp. 437–471.CrossRefGoogle Scholar
  13. Kantha, L.H., J.S. Stewart, and S.D. Desai (1998). Long-period lunar fortnightly and monthly ocean tides. J. Geophys. Res., 103, pp. 12639–12647.CrossRefGoogle Scholar
  14. Lambeck, K. (1980). The Earth’s Variable Rotation. Cambridge University Press, New York.CrossRefGoogle Scholar
  15. Marcus, S.L., Y. Chao, J.O. Dickey, and P. Gegout (1998). Detection and modeling of nontidal oceanic effects on Earth’s rotation rate. Science, 281, pp. 1656–1659.CrossRefGoogle Scholar
  16. Munk, W.H., and G.J.F. MacDonald (1960). The Rotation of the Earth. Cambridge University Press, New York.Google Scholar
  17. Nastula, J., R.M. Ponte, and D.A. Salstein (2000). Regional signals in atmospheric and oceanic excitation of polar motion. In: Polar Motion: Historical and Scientific Problems, IAU Colloq. 178. edited by Dick, S. D. McCarthy, and B. Luzum (eds). pp. 463–472, Astron. Soc. Pacific Conf. Ser. vol. 208, San Francisco.Google Scholar
  18. Ponte, R.M. (1993). Variability in a homogenous global ocean forced by barometric pressure. Dyn. Atmos. Oceans, 18, pp. 209–234.CrossRefGoogle Scholar
  19. Ponte, R.M. (1994). Understanding the relation between wind-and pressure-driven sea level variability. J. Geophys. Res., 99, pp. 8033–8039.CrossRefGoogle Scholar
  20. Ponte, R.M., and D. Stammer (1999). Role of ocean currents and bottom pressure variability on seasonal polar motion. J. Geophys. Res., 104, pp. 23393–23409.CrossRefGoogle Scholar
  21. Ponte, R.M., and D. Stammer (2000). Global and regional axial ocean angular momentum signals and length-ofday variations (1985–1996). J. Geophys. Res., 105, pp. 17161–17171.CrossRefGoogle Scholar
  22. Ponte, R.M., D. Stammer, and J. Marshall (1998). Oceanic signals in observed motions of the Earth’s pole of rotation. Nature, 391, pp. 476–479.CrossRefGoogle Scholar
  23. Ponte, R.M., D. Stammer, and C. Wunsch (2001). Improving ocean angular momentum estimates using a model constrained by data. Geophys. Res. Lett., 28, pp. 1775–1778.CrossRefGoogle Scholar
  24. Rosen, R.D. (1993). The axial momentum balance of Earth and its fluid envelope. Surveys Geophys., 14, pp. 1–29.CrossRefGoogle Scholar
  25. Salstein, D.A., and R.D. Rosen (1997). Global momentum and energy signals from reanalysis systems. Preprints, 7th Conf. on Climate Variations. pp. 344–348, American Meteorological Society, Boston.Google Scholar
  26. Salstein, D.A., D.M. Kann, A.J. Miller, and R.D. Rosen (1993). The Sub-Bureau for Atmospheric Angular Momentum of the International Earth Rotation Service: A meteorological data center with geodetic applications. Bull. Amer. Meteorol. Soc., 74, pp. 67–80.CrossRefGoogle Scholar
  27. Thomas, M., J. Sündermann, and E. Maier-Reimer (2001). Consideration of ocean tides in an OGCM and impacts on subseasonal to decadal polar motion excitation. Geophys. Res. Lett., 28, pp. 2457–2460.CrossRefGoogle Scholar
  28. Wahr, J.M. (1982). The effects of the atmosphere and oceans on the Earth’s wobbles — Theory. Geophys. J. R. astr. Soc., 70, pp. 349–372.CrossRefGoogle Scholar
  29. Wunsch, C., and D. Stammer (1997). Atmospheric loading and the oceanic “inverted barometer” effect. Rev. Geophys., 35, pp. 79–107.CrossRefGoogle Scholar
  30. Yoder, C.F., J.G. Williams, and M.E. Parke (1981). Tidal variations of Earth rotation. J. Geophys. Res., 86, pp. 881–891.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Richard S. Gross
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations