Advertisement

Ellipsoidal Vertical Deflections: Regional, Continental, Global Maps of the Horizontal Derivative of the Incremental Gravity Potential

  • G. Finn
  • E. W. Grafarend
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)

Abstract

A gravity potential field of ellipsoidal type is required for high resolution computation of the deflection of the vertical. With respect to the gravity potential model Spheroidal Earth Gravity Normal (SEGEN) a new theory is given for the prediction of long wave (global) portions of vertical deflections. The vertical deflections are developed into a series of ellipsoidal harmonics up to degree/ order 360/360, parameterised in Jacobi spheroidal coordinates, which result in an improvement of accuracy of two orders of magnitude compared with a spherical definition based on a spherical reference gravity potential field. Test computations are presented in regional, continental and global maps with respect to World Geodetic Datum 2000.

Keywords

Ellipsoidal Vertical Deflections Ellipsoidal Harmonics Somigliana-Pizzetti Field SEGEN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardalan AA, Grafarend EW (2000) Reference ellipsoidal gravity potential field and gravity intensity field of degree/order 360/360 (manual of using ellipsoidal harmonic coefficients ‘Ellipfree.dat’ and ‘ellipmean.dat’). http://www.uni-stuttgart.de /gi/research/paper/coefficients/ coefficients.zipGoogle Scholar
  2. Ardalan AA, Grafarend EW (2001) Somigliana-Pizzetti gravity: the international gravity formula accurate to the sub-nanoGal level. J Geod 75: 424–437CrossRefGoogle Scholar
  3. Asche W van (1991) Orthogonal polynomials, associated polynomials and functions of the second kind. J Comp Applied Math 37: 237–249CrossRefGoogle Scholar
  4. Balmino G, Barriot J, Koop R, Middel B., Thông NC, Vermeer M (1991) Simulation of gravity gradients: a comparison study. Bull Géod 65: 218–229CrossRefGoogle Scholar
  5. Chandrasekhar S, Roberts PH (1963) The ellipticity of a slowly rotating configuration. Astrophys J 138: 801–808CrossRefGoogle Scholar
  6. Chandrasekhar S (1969) Ellipsoidal figures of equilibrium. Yale University Press, New HavenGoogle Scholar
  7. Ekman M (1996) The permanent problem of the permanent tide: what to do with it in geodetic reference systems. Mar Terres 125: 9508–9513Google Scholar
  8. Gleason DM (1988) Comparing corrections to the transformation between the geopotential’s spherical and ellipsoidal spectrum. Manuscr Geod 13: 114–129Google Scholar
  9. Gleason DM (1989) Some notes on the evaluation of ellipsoidal and spheroidal harmonic expansions. Manuscr Geod 14: 114–116Google Scholar
  10. Grafarend EW (2001) The spherical horizontal and the spherical vertical boundary value problem — vertical deflections and geoidal undulations — the completed Meissl diagram. J Geod 75: 363–390CrossRefGoogle Scholar
  11. Grafarend EW, Ardalan AA (1999) World Geodetic Datum 2000. J Geod 73: 611–623CrossRefGoogle Scholar
  12. Grafarend EW, Hauer KH (1978) The equilibrium figure of the Earth I. Bull Géod 52: 251–267CrossRefGoogle Scholar
  13. Grafarend EW, Heidenreich A (1995) The generalised Mollweide projection of the biaxial ellipsoid. Bull Géod 69: 164–172CrossRefGoogle Scholar
  14. Grafarend EW, Finn Ardalan AA (2002) Ellipsoidal vertical deflections and ellipsoidal gravity disturbances: case studies. J Geod, received: July 8`h 2002Google Scholar
  15. Jacobi CGJ (1834) Über die Figur des Gleichgewichts. PoggendorfAnnalen der Physik und Chemie 33: 229–238CrossRefGoogle Scholar
  16. Jekeli C (1988) The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscr Geod 13: 106–113Google Scholar
  17. Jekeli C (1999) An analysis of vertical deflections derived from high-degree spherical harmonic models. J Geod 73: 10–22CrossRefGoogle Scholar
  18. Maclaurin C (1742) A treatise on fluxions. EdinburghGoogle Scholar
  19. Mikolaiski HW (1989) Polbewegung eines deformierbaren Erdkörpers. Ph. D. Thesis, Bayerische Akademie der Wissenschaften, Deutsche Geodätische Kommission, Reihe C Heft 354, MünchenGoogle Scholar
  20. Moritz H (1968a) Density distributions for the equipotential ellipsoid. Report 115, Department of Geodetic Science, Ohio State University, ColumbusGoogle Scholar
  21. Moritz H (1968b) Mass distributions for the equipotential ellipsoid. Bolletino di Geofisica Teorica ed Applicata 10: 59–65Google Scholar
  22. Moritz H (1973) Computation of ellipsoidal mass distributions. Report 206, Department of Geodetic Science, Ohio State University, ColumbusGoogle Scholar
  23. Moritz H (1984) Geodetic Reference System 1980. The geodesist’s handbook. Bull Géod 58: 388–398Google Scholar
  24. Moritz H (1990) The figure of the Earth. Wichmann Verlag, KarlsruheGoogle Scholar
  25. Moritz H, Mueller I (1987) Earth rotation, theory and observation. Ungar, New YorkGoogle Scholar
  26. Novak P, Simek J, Kosteleckÿ J (2003) Characteristics of the Earth’s gravity field for Central Europe in context of some geophysical phenomena. Presented at the 28th EGS General Assembly, Nice, 2003, Geophysical Research Abstracts, Vol. 5, 12011Google Scholar
  27. Sansò F, Sona G (2001) ELGRAM: an ellipsoidal gravity model manipulator. Bolletino di Geodesia e Scienze Affini 60: 215–226Google Scholar
  28. Skrzipek MR (1998) Polynomial evaluation and associated polynomials. Num Math 79: 601–613CrossRefGoogle Scholar
  29. Sona G (1996) Numerical problems in the computation of ellipsoidal harmonics. J Geod 70: 117–126CrossRefGoogle Scholar
  30. Thông NC, Grafarend EW (1989) A spheroidal model of the terrestrial gravitational field. Manuscr Geod 14: 285–304Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • G. Finn
    • 1
  • E. W. Grafarend
    • 1
  1. 1.Department of Geodesy and GeoinformaticsStuttgart UniversityStuttgartGermany

Personalised recommendations