The estimation theory for random fields in the Bayesian context; a contribution from Geodesy

  • Fernando Sansò
  • Giovanna Venuti
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)


The paper first reviews the existing mathematical theory for the estimation of a random field T, with known covariance C, from a finite vector of observations, related to T by linear functionals, in the framework of a Bayesian approach.

In particular in Section 2 and Section 3 the equivalence between ordinary collocation formulas, their explaination in terms of generalized random fields and the full probabilistic picture is demonstrated. Then the more general problem of estimating from data both T and its covariance C is tackled; in Section 4 it is shown how to reduce the problem by using prior invariance principles and a prior vague information on the regularity of the field T. In this case it is shown how to construct the posterior distribution of the unknowns. Then in Section 5 the theory of logarithmic derivatives of infinite dimensional distributions is recalled and in Section 6 the corresponding Maximum a-Posteriori equations are constructed. A theorem of existence of at least one solution is proved too. Conclusions follow.


Hilbert Space Posterior Distribution Random Field Covariance Function Bayesian Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bogachev VI (1995) Differential measures and the Malliavin calculus. Preprints di Mat no 16, Scuola Normale Superiore di Pisa.Google Scholar
  2. Bogachev VI (1996) Gaussian measures on linear spaces. J Math Sc 79.Google Scholar
  3. Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Wiley.Google Scholar
  4. Heiskanen WA Moritz H (1967) Physical geodesy. Freeman, San Francisco and London.Google Scholar
  5. Krarup T (1969) A contribution to the mathematical foundation of physical geodesy. Meddelelse no 44, Geodätisk Inst Köbenhavn.Google Scholar
  6. Lauritzen SL (1973) The probabilistic background of some statistical method in physical geodesy. Meddelelse no 48, Geodätisk Inst Köbenhavn.Google Scholar
  7. Lehtinen MS, Päivärinta L, Somersalo E (1989) Linear inverse problems for generalized random variables. IOP — Inverse Problems 5: 599–612.CrossRefGoogle Scholar
  8. Mandelbaum A (1984) Linear estimators and measurable linear transformations on Hilbert space. Wahrscheinlichkeitstheorie verw. Gebeite 65: 385–397.CrossRefGoogle Scholar
  9. Moritz H (1980) Advanced physical geodesy. Wichmann, Karlsruhe.Google Scholar
  10. Rozanov YuA (1971) Infinite-dimensional gaussian distributions. (English trans. AMS ). Proceedings of the Steklov Inst. of Math. 108.Google Scholar
  11. Sacerdote F, Sansò F (1996) Optimal linear estimation theory for continuous fields of observations. In: Lecture Notes in Earth Sciences 63, Springer Verlag, Berlin, pp 262–275.Google Scholar
  12. Sansò (1986) Statistical methods in physical geodesy. In: H. Sünkel (ed) Mathematical and numerical techniques in physical geodesy, Springer Verlag, Berlin, pp 49–155.CrossRefGoogle Scholar
  13. Sansò F, Venuti G, Tscheming CC (2000) A theorem of insensitivity of the collocation solution to variations of the metric of the interpolation space. In: KP Schwarz (ed) Geodesy beyond 2000, Springer Verlag, Berlin, pp 233–240.Google Scholar
  14. Skorohod AV (1974) Integration in Hilbert space. Ergebnisse der Mathematik und ihrer Grenzgebiete 79, Springer Verlag, Berlin.CrossRefGoogle Scholar
  15. Tarantola A (1987) Inverse problems theory; methods for data fitting and model parameter estimation. Elsevier, Amsterdam.Google Scholar
  16. Tarantola A, Valette B (1982) Inverse problems; quest for information. J of Geoph 50: 159–70.Google Scholar
  17. Tscherning CC (1977) A note on choice of norm when using collocation for the computation of the approximations to the anomalous potential. Bull Geod 51.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fernando Sansò
    • 1
  • Giovanna Venuti
    • 1
  1. 1.DIIAR - Sezione RilevamentoPolitecnico di MilanoMilanoItaly

Personalised recommendations