Problems in the Definition of Vertical Reference Frames

Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)


Present and future satellite-borne gravity field missions will have a major impact on the unification of regional height systems into a consistent global vertical reference frame. On the background of the high precision and quality of the expected data the scientific concepts of vertical reference frames have to be discussed, before a global frame will be implemented or before international standards and conventions can be fixed.

This paper addresses some major theoretical problems in the definition of vertical reference frames such as difficulties due to the time-dependence of the gravity field and its level surfaces, problems in assigning a geoidal potential value W0, and the consistent treatment of the permanent tidal effect. Examples from the European Vertical Reference Frame 2000 (EVRF 2000) and the draft of the IERS conventions 2000 prove that these inconsistencies are inherent in several branches of Geodesy and must be taken care of in the practical work involving height systems. Emphasis is given to the formulation of open problems rather than to the presentation of solutions.


Vertical reference frames gravity field geoid permanent tidal effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ardalan, A, E. Grafarend, and J. Kakkuri (2002). National Height Datum, the Gauss-Listing Geoid Level Value wo and its Time Variation *0. (Baltic Sea Level Project: Epochs 1990.8, 1993.8, 1997, 4). J. Geod., 76, pp. 1–28.CrossRefGoogle Scholar
  2. Baarda, W. (1979). A Connection Between Geometric and Gravimetric Geodesy. A First Sketch. Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 6, No. 4.Google Scholar
  3. Bursa, M., E. Groten, S. Kenyon, J. Kouba, K. Radej, V. Vatrt, and M. Vojtiskova ( 2001 ). Earth’s Dimension Specified by Geoidal Geopotential. IAG Scientific Assembly, Sept. 2001, Budapest.Google Scholar
  4. Colombo, O.L. (1980). A World Vertical Network. Dept. of Geodetic Science, Ohio State University, Columbus, Ohio, Rep. No. 196.Google Scholar
  5. Denker, H., and W. Torge (1997). The European Gravimetric Quasigeoid EGG97–An IAG Supported Continental Enterprise. In: Forsberg R, Feissel M, Dietrich R (Eds), Geodesy on the Move. IAG Symposia, 119, Springer, pp. 249–254.Google Scholar
  6. Ekman, M. (1989). Impacts of Geodynamic Phenomena on Systems for Height and Gravity. Bull. Géod. 63, pp. 281296.Google Scholar
  7. EUREF (2000). European Vertical Reference System (EVRS). Torres JA, Hornik H (Eds), Report on the EUREF Symposium Tromso, June 2000. Veröff. Bay. Komm. f Internat. Erdmessung,Astron.-Geod. Arbeiten, Nr. 61, pp. 101–110.Google Scholar
  8. Grafarend, E. (1982). Six Lectures on Geodesy and Global Geodynamics. In: Geodesy and Global Geodynamics, Mitt. Geod. Inst. TU Graz, Folge 41. Moritz H Sünkel H (Eds), pp. 531–685.Google Scholar
  9. Grafarend, E.W., and A.A.Ardalan (1999). World Geodetic Datum 2000. J. Geod., 73, pp. 611–623.CrossRefGoogle Scholar
  10. Groten, E. (1980). A Remark on M. Heikkinen’s Paper „On the Honkasalo Term in Tidal Corrections to Gravimetric Observations“. Bull. Géod., 54, pp. 221–223.CrossRefGoogle Scholar
  11. Heck, B. (1984). Zur Bestimmung vertikaler rezenter Erdkrustenbewegungen und zeitlicher Änderungen des Schwerefeldes aus wiederholten Schweremessungen und Nivellements. Deutsche Geodätische Kommission, Reihe C, Heft Nr. 302, Munich.Google Scholar
  12. Heck, B. (1993). Tidal corrections in geodetic height determination. In: Linkwitz K, Eisele V, Mönicke H-J (Eds), Applications of Geodesy to Engineering. IAG Symposia, Vol 108, Springer, pp. 11–24.Google Scholar
  13. Heck, B. (1995). Rechenverfahren und Auswertemodelle der Landesvermessung. 2. Aufl., Wichmann Heidelberg.Google Scholar
  14. Heck, B., and H. Mälzer (1983). Determination of Vertical Recent Crustal Movements by Levelling and Gravity Data. Tectonophysics, 97, pp. 251–264.CrossRefGoogle Scholar
  15. Heck, B., and R. Rummel (1990). Strategies for Solving the Vertical Datum Problem Using Terrestrial and Satellite Data. In: Sünkel H, Baker T (Eds), Sea Surface Topography and the Geoid. Proc. of IAG Symposia. Vol 104, Springer Berlin Heidelberg New York, pp. 116–128.Google Scholar
  16. Heikkinen, M. (1979). On the Honkasalo Term in Tidal Corrections to Gravimetric Observations. Bull. Géod., 53, pp. 239–245.CrossRefGoogle Scholar
  17. Heiskanen, W.A., and H. Moritz (1967). Physical Geodesy. W.H. Freeman, San Francisco.Google Scholar
  18. Heitz, S. (1980). Mechanik fester Körper. Mit Anwendungen in Geodäsie, Geophysik und Astronomie. Band 1. Dümmler, Bonn.Google Scholar
  19. Lemoine, F.G. et al. (1998). The Deveploment of the Joint NASA-GSFC and the NIMA Geopotential Model EGM96. NASA/TP-1998–206861.Google Scholar
  20. Listing, J.B. (1873). Ueber unserer jetzige Kenntnis der Gestalt und Grösse der Erde. Nachr. Königl. Gesellschaft der Wissenschaften und der G.A. Universität zu Göttingen, No. 3, pp. 33–98.Google Scholar
  21. Mäkinen, J. (2000). A Note on the Treatment of the Permanent Tidal Effect in the European Vertical Reference System (EVRS). Torres JA, Hornik H (Eds), Report on the EUREF Symposium Tromso, June 2000. Veröff. Bay. Komm. f Internat. Erdmessung,Astron.Geod. Arbeiten, Nr. 61, pp. 111–113.Google Scholar
  22. Mather, R.S. (1978). The Role of the Geoid in Four- Dimensional Geodesy. Marine Geodesy, 1, pp. 217–252.CrossRefGoogle Scholar
  23. McCarthy, D.D. (Ed.) (1996). IERS Conventions. IERS Technical Note 21, CB/IERS, Paris.Google Scholar
  24. Melchior, P. (1983). The Tides of the Planet Earth. Pergamon Press, Oxford.Google Scholar
  25. Moritz, H. (2000). Geodetic Reference System 1980. J. Geod., 74, pp. 128–133.CrossRefGoogle Scholar
  26. Poutanen, M., M. Vermeer, and J. Mäkinen (1996). The Permanent Tide in GPS Positioning. J. Geod., 70, pp. 499504.Google Scholar
  27. Rapp, R.H. (1983). Tidal Gravity Computations Based on Recommendations of the Standard Earth Tide Committee. Bull. Inf. Marés Terrestres, 89, pp. 5814–5819.Google Scholar
  28. Rapp, R.H. (1989). The Treatment of Permanent Tidal Effects in the Analysis of Satellite Altimeter Data for Sea Surface Topography. Manuscr. Geod., 14, pp. 368–372.Google Scholar
  29. Rapp, R.H. (1995). A World Vertical Datum Proposal. Allgemeine Vermessungs-Nachrichten, 102, pp. 297–304.Google Scholar
  30. Rapp, R.H., and N. Balasubramania (1992). A Conceptual Formulation of a World Height System. Dept. of Geodetic Science, Ohio State University, Columbus, Ohio, Rep. No. 421.Google Scholar
  31. Rummel, R. (2001). Global Unification of Height Systems and GOCE. In: Sideris M (Ed), Gravity, Geoid and Geodynamics 2000. Proc. of IAG Symposia. Vol 123, Springer Berlin Heidelberg New York, pp. 13–20.Google Scholar
  32. Rummel, R., and B. Heck (2000). Some Critical Remarks on the Definition and Realization of the EVRS. Tones JA, Hornik H (Eds.), Report on the EUREF Symposium Tromso, June 2000. Veröff Bay. Komm. f Internat. Erdmessung, Astron.-Geod. Arbeiten, Nr. 61, pp. 114–115.Google Scholar
  33. Rummel, R., and K.H. Ilk (1995). Height Datum Connection–the Ocean Part. Allgemeine Vermessungs-Nachrichten, 102, pp. 321–330.Google Scholar
  34. Rummel, R., and P. Teunissen (1988). Height Datum Definition, Height Datum Connection and the Role of the Geodetic Boundary Value Problem. Bull. Géod., 62, p. 477–498.CrossRefGoogle Scholar
  35. Sanso, F., and S. Usai (1995). Height Datum and Local Geodetic Datums in the Theory of Geodetic Boundary Value Problems. Allgemeine Vermessungs-Nachrich-ten, 102, pp. 343–355.Google Scholar
  36. Sanso, F. and G. Venuti (2002). The Height Datum/Geodetic Datum Problem. Geoph. J. Int., 149, pp. 768–775.CrossRefGoogle Scholar
  37. Schneider, M. (1981). Himmelsmechanik. Bibl. Inst.Google Scholar
  38. Tscherning, C.C. (Ed.) (1984). The Geodesist’s Handbook. Bull. Géod. 58, No. 3.Google Scholar
  39. Wenzel, H.-G. (1997). Tide-generating Potential for the Earth. In: Wilhelm H, Zürn W, Wenzel H-G (Eds), Tidal Phenomena. Lecture Notes in Earth Sciences 66, Springer-Verlag Berlin Heidelberg, pp. 9–26.Google Scholar
  40. Xu, P. (1992). A Quality Investigation of Global Vertical Datum Connection. Geophys. J. Im’., 110, pp. 361–370.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • B. Heck
    • 1
  1. 1.Geodetic InstituteUniversity of KarlsruheKarlsruheGermany

Personalised recommendations