ITRF2000: From Theory to Implementation

  • Z. Altamimi
  • P. Sillard
  • C. Boucher
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)


One of the main geodetic activities is to determine positions of points or objects over the Earth surface or nearby space. Meanwhile when dealing with geodetic observations, a certain Terrestrial Reference System (TRS) has to be adopted in which point positions will be expressed. Since there are many ways to realize the adopted TRS, the most challenging issue is to select the “best” one that preserves the actual quality of geodesy observations. Conversely, noting that the observations are, and should remain, insensitive to the adopted theoretical TRS, they should not be altered by the added pseudo observations (termed as constraints) permitting to specify a Terrestrial Reference Frame (TRF) as the “best” realization of the TRS. In this paper we will focus on the main important parameters needed to define a TRF (called datum definition), as well as the current achievement of Space Geodesy techniques, through the activities related to the International Terrestrial Reference Frame (ITRF). The use of minimum constraints approach is emphasized both in case of individual TRS realization by space geodesy techniques and in combination, allowing to precisely define the ITRF datum definition. Some important results of the latest ITRF solution, namely ITRF2000, will be used to illustrate the discussion over two axes: accuracy of the datum definition and the current quality of space geodesy solutions used in the ITRF2000 combination.


Reference Systems Reference Frames rank deficiency minimum constraints ITRF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi, Z., P. Sillard, C. Boucher (2002), ITRF2000: A New Release of the International Terrestrial Reference Frame for Earth Science Applications, J. Geophys. Res., 107 (B10), 2214, doi:  10.1029/2001JB000561 CrossRefGoogle Scholar
  2. Altamimi, Z., P. Sillard, C. Boucher (2003). The Impact of a No-Net-Rotation Condition on ITRF2000, Geophys. Res. Leu., 30 (2), 1064, doi:  10.1029/2002GL016279 CrossRefGoogle Scholar
  3. Argus, D.F., R.G. Gordon (1991). No-net rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett.18, 20382042.Google Scholar
  4. Blaha G. (1971), Inner adjustment constraints with emphasis on range observations, Department of Geodetic Science, Report 148, The Ohio State University, Columbus.Google Scholar
  5. Boucher, C., (2000). Terrestrial coordinate systems and frames, in Encyclopedia of Astronomy and Astrophysics, Version 1.0, pp. 3289–3292, Inst. of Phys. Publ, Bristol, UK.Google Scholar
  6. Dermanis, A., this issue.Google Scholar
  7. Dermanis, A. (2000), Establishing Global Reference Frames. Nonlinear, Temporal, Geophysical and Stochastic Aspects, In: Sideris, (ed.), Gravity, Geoid and Geodynamics 2000, IAG Symposium Vol. 123, pp. 3542.Google Scholar
  8. DeMets, C., R.G. Gordon, D.F. Argus, S.Stein (1990). Current plate motions. Geophys. J. Int., 101, 425–478.CrossRefGoogle Scholar
  9. DeMets, C., R. G. Gordon, D. F. Argus, S. Stein (1994). Effect of recent revisions of the geomagnetic reversal timescale on estimates of current plate motions, Geophys. Res. Lett.21(20), 2191–2194.Google Scholar
  10. Kovalevsky, J., Mueller, I. I., B. Kolaczek (Eds.),(1989). Reference Frames in Astronomy and Geophysics,474 pp., Kluwer Academic Publisher, Dordrecht.Google Scholar
  11. Schaffrin, B., H. Bâki Iz (2001). BLIMPBE and its Geodetic Applications. In: Adam and Schwarz (eds.), Vistas for Geodesy in the New Millennium, IAG Symposia, Vol. 125, pp. 377–381.Google Scholar
  12. Sillard, P., C. Boucher, (2001) Review of Algebraic Constraints in Terrestrial Reference Frame Datum Definition, Journal of Geodesy, 75, 63–73.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Z. Altamimi
    • 1
  • P. Sillard
    • 1
  • C. Boucher
    • 2
  1. 1.Institut Géographique NationalENSG/LAREGMarne-la-ValléeFrance
  2. 2.Institut Géographique NationalDAEISaint MandéFrance

Personalised recommendations