Advertisement

Gaussian Differential Geometry and Differential Geodesy

  • Joseph D. Zund
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 127)

Abstract

This paper presents an appreciation of the work of Marussi and Hotine, and gives a survey of my investigations of Gaussian differential geometry which are required in formulating the generalized Marussi-Hotine approach to differential geodesy. It is not intended to be either a comprehensive survey, or a status report, on the beautiful contributions of other authors in different approaches to differential geodesy.

Keywords

Codazzi Equation Basic Tensor Gaussian Theory Weingarten Formula Classical Differential Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gauss, C. F. (1825). Allgemeine Auflösung der Aufgabe: Die Theile einer gegebnen Fläche auf einer andern gegebnen Fläche so abzubilden, dass die Abbildung der Abgebildeteen in den kleinsten Theilen ähnlich wird, Astronomischen Nachrichten. 3: 1–30CrossRefGoogle Scholar
  2. 2.
    Gauss, C. F. (1828). Disquisitiones generales circa superficies curves. Commentationes societatis regiae scientiarum Göttingensis, Commentationes classis mathematicae 6: 99–146Google Scholar
  3. 3.
    Hotine, M. (1970). Mathematical Geodesy, U. S. Department of Commerce, Washington, D. C.Google Scholar
  4. 4.
    Hotine, M. (1991). Differential Geodesy, Zund J. D., Nolton J., Chovitz B. H., Whitten C. A. (eds) Springer-Verlag, Berlin.Google Scholar
  5. 5.
    Marussi, A. (1949). Fondements de géométrie différentielle absolue du champ potentiel terrestre. Bulletin Géodésique, 14, pp. 411–439.CrossRefGoogle Scholar
  6. 6.
    Marussi, A (1985). Intrinsic Geodesy. (translated by W. I. Reilly), Springer-Verlag, Berlin.CrossRefGoogle Scholar
  7. 7.
    Marussi, A. (1988). Intrinsic Geodesy, (a revised and edited version of his 1952 lectures prepared by J. D. Zund), Report Number 390, Department of Geodetic Science and Surveying, The Ohio State University, Columbus.Google Scholar
  8. 8.
    McConnell, J. A. (1931). Applications of the absolute fferential calculus. Blackie & Son, Limited, London (reprinted as Applications of tensor analysis,by Dover Publications, Inc., New York, (1957)).Google Scholar
  9. 9.
    Ricci, G. (1898). Lezioni sulla teoria della superficie. Fratelli Drucker - Editore, Verona - Padova.Google Scholar
  10. 10.
    Zund, J. D. (1988). Tensorial methods in classical differential geometry I: basic principles. Tensor N. S. 47, pp. 73–82.Google Scholar
  11. 11.
    Zund, J. D. (1988). Tensorial methods in classical differential geometry II: basic surface tensors. Tensor N. S. 47, pp. 83–92.Google Scholar
  12. 12.
    Zund, J. D. (1990). An essay on the mathematical foundations of the Marussi-Hotine approach to geodesy. Bolletino di Geodesia e Scienze Affini XLIX, pp. 133–179.Google Scholar
  13. 13.
    Zund, J. D. (1991). The work of Antonio Marussi in theoretical geodesy. Proceedings of the Geodetic Day in honor of Antonio Marussi. Accademia Nazionale dei Lincei, Rome.Google Scholar
  14. 14.
    Zund, J. D. (1994). Foundations of differential geodesy. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  15. 15.
    Zund, J. D. (1996). An essay on the foundations of Gaussian differential geometry I: completeness questions. Bolletino di Geodesia e Scienze Affini LV, pp. 377–384.Google Scholar
  16. 16.
    Zund, J. D. (1997). An essay on the foundations of Gaussian differential geometry II: imbedding questions. Bolletino di Geodesia e Scienze Affini LVI, pp. 407–424.Google Scholar
  17. 17.
    Zund, J. D. (1998). An essay on the foundations of Gaussian differential geometry III: sphere geometry. Bolletino di Geodesia e Scienze Affini LVII, pp. 309–321.Google Scholar
  18. 18.
    Zund, J. D.(199). An essay on the foundations of Gaussian differential geometry IV: the parametrization problem. Bolletino di Geodesia e Scienze Affini LVIII, pp. 325–352.Google Scholar
  19. 19.
    Zund, J. D. (2000). An essay on the foundations of Gaussian differential geometry V: operator methods. Bolletino di Geodesia e Scienze Affini LIX, pp. 351–368.Google Scholar
  20. 20.
    Zund, J. D. (2001). An essay on the foundations of Gaussian differential geometry VI: the reciprocal Gauss operator. Bolletino di Geodesia e Scienze Affini LX, pp. 191–212.Google Scholar
  21. 21.
    Zund, J. D. (2003). An essay on the foundations of Gaussian differential geometry VII: the parametrization problem revisited, Bolletino di Geodesia e Scienze Affini, LXII, 63–76.Google Scholar
  22. 22.
    Zund, J. D. (2003). An essay on the foundations of Gaussian differential geometry VIII: the leg integrability conditions, Bolletino di Geodesia e Scienze Affini,LXII, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Joseph D. Zund
    • 1
  1. 1.New Mexico State UniversityLas CrucesUSA

Personalised recommendations