# Inertial Confinement Fusion with Lasers or Particle Beams

• P. Mulser
Conference paper

## Abstract

Controlled fusion of light nuclei for energy production occurs at hight temperatures, kT≳10keV. In order to obtain efficient burn the fuel has to be confined for a minimum time τ which is inversely proportional to the fuel density (Nuckolls, 1982). At low particle densities the fuel can be confined and kept in a steady state by magnetic fields. At densities higher than n ≅ 1017 cm−3 matter can be confined only by its own inertia, and so burn has to be achieved in a very short time; the less thermonuclear fuel is involved the shorter this will be. The principle of ICF is simple (Fig.1). A pellet of radius R, uniform density n and temperature T burns according to (Duderstadt, Moses, 1982)
$$\frac{d}{{dt}}\frac{n}{2} = \frac{{{n^2}}}{2} \left\langle \sigma \right.\left. v \right\rangle$$
(1.1)
where < σv > is the reaction rate of one fuel perticle averaged over its velocity distribution function. Owing to the high temperature the pellet disassembles with the rarefaction wave the edge of which moves inward at sound speed s = (kT/$${\bar m_i}$$)½, where $${\bar m_i}$$ stands for the average fuel ion mass. Keeping in mind thet 60% of the mass is contained the outer shell of thickness R/4 an adequate expression for the confinement time is τ = R/4s. With this the fractional burn η = 1 − n(τ)/n0 is obtained by integrating eq. (1.1)
$$\eta = \frac{{\rho R}}{{\rho R + \delta }}, \delta = 8{({\bar m_i}kT)^{1/2}}/ < \sigma v >= \delta (T).$$
(1.2)
The parameter δ is a function of temperature only.

### Keywords

Entropy Anisotropy Convection Recombination Iodine

## Preview

### References

1. Andronov, V.A., S.M. Bakhrakh, E.E. Meshkov, V.N. Mochov, V.V. Nikiforov, V.A. Pevnitskii and A.I. Tolshmyakov (1977). Soy. Phys. JETP 44, 424–427
2. Atzeni, S. and A. Caruso (1983). Nucl. Fusion 23, 1092–1097
3. Atzeni, S. (1984). Nucl. Fusion 24, 1220–1227
4. Atzeni, S. and A. Caruso (1984). Nuovo Cimento 80, 71–103
5. Bangerter, R. and D. Meeker (1976). Ion beam intertiel fusion design. S. Lawrence Livermore Laboratory Rep. UCRL 78474Google Scholar
6. Bangerter, R. O. (1984). Ion beam interactions with ICF tergets. In H. Hora, and G.H. Miley (Eds.). Laser Interaction and Related Plasma Phenomena’ vol. 6, Plenum Press, New York. pp. 1013–1027Google Scholar
7. Betz, H.D. (1983). Applied Atomic Collision Physics, vol. 4, Academic Press, New YorkGoogle Scholar
8. Bock, R., I. Hofmann, and R.C. Arnold (1984). Nucl. Sci. Applications, 2, 97–126Google Scholar
9. Bodner, S.E. (1974). Phys. Rev. Letters, 33, 761–765
10. Bodner, S.E., M. Emery, J. Gardner, J. Grun, M. Herbst, S. Kacenjar, R. Lehmberg, C. Manka, E. McLean, S. Obenschain, B. Ripin, A. Schmitt, J. Stamper, and F. Young (1985). Symmetry, stability and efficiency in direct-drive laser fusion. Proc. 10th Int. Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, vol. 3, 155–161Google Scholar
11. Craxton, R.S., and R.L. McCrory (1984). J. Appl. Phys., 56, 108–117
12. Duderstadt, J.J., G.A. Moses (1982). Inertial Confinement Fusion, John Wiley & Sons, New York, chap. 1Google Scholar
13. Eidmann, K., F. Amiranoff, R. Fedosejevs, A.G.M. Maaswinkel, R. Petsch, R. Sigel, G. Spindler, Yung-lu-Teng, G. Tsakiris, S. Witkowski (1984). Phys. Rev. A30, 2568–2589
14. Emery, M.H., J.H. Gardner, and J.P. Boris (1982). Phys. Rev. Letters, 48, 677–680
15. Emery, M.H., J.H. Gardner, and J.P. Boris (1985). Magnetic fields and thermal flux inhibition in ICF. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 129–137Google Scholar
16. Evans, R.G., A.J. Bennet, and G.J. Pert (1982). Phys. Rev. Letters, 49, 1639–1642
17. Fabre, E. (1985). Experiments on physics of direct laser drive implosion of spherical targets. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 139–147Google Scholar
18. Forslund, D.W., J.M. Kindel, and E.L. Lindrnan (1977). Phys. Rev. Letters, 39, 284–288
19. Fraley, G.S., E.J. Linneburg, R.J. Maison, and R.L. Morse (1974). Phys. Fluids, 17, 476–489
20. Geissel, H., Y. Laichter, W.F.W. Schneider, and P. Armbruster (1983). Phys. Letters, 99A, 77–80
21. HIBALL-II (1985). An improved conceptual heavy ion beam driven fusion reactor study. KFK KarlsruheGoogle Scholar
22. Johnston, Th.H. (1984). Inertial confinement fusion: review and perspective. Proc. IEEE 72, 548–594Google Scholar
23. Kidder, R.E. (1976). Nucl. Fusion, 16, 405–408
24. Kidder, R.E. (1979). Nucl. Fusion, 19, 223–234
25. Kull, H.J. (1982). Perfect fluid model of Rayleigh-Taylor instability. IAP-Rep. 102/82, DarmstadtGoogle Scholar
26. Kull, H. (1983). Phys. Rev. Letters, 51, 1434–1437
27. Kull, H.J. (1983). Convective stabilization in the incompressible Rayleigh-Taylor instability. IAP-Rep. 109/85, DarmstadtGoogle Scholar
28. Lehmberg, R.H., and S.P. Obenschain (1983). Opt. Comm., 46, 27–29
29. Lindl, J.D., and W.C. Mead (1975). Phys. Rev. Letters, 34, 1273–1276
30. Lindl, J.L., J.W-K. Mark (1985). Laser and Particle Beams, 3, 37–39
31. Max, C.E., J.D. Lindl, and W.C. Mead (1983). Nucl. Fusion, 23, 131–145
32. Meger, R.A., R.J. Commisso, G. Cooperstein, and S.A. Goldstein (1977). J. Appl. Phys., 48, 1004–1006
33. McCrory, R.L. (1985). Short wavelength, direct drive laser fusion experiments at the laboratory for laser energetics. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 37–48Google Scholar
34. Metzler, N., and J. Meyer-ter-Vehn (1984). Laser and Particle Beams, 2, 27–48
35. Meyer-ter-Vehn, J. (1982). Nucl. Fusion, 22, 561–566
36. More, R.M. (1981). Atomic physics in inertial confinement fusion. Lawrence Livermore Laboratory Rep. UCRL 84991, Part I, pp. 200–220Google Scholar
37. Mulser, P., C. van Kessel (1978). J. Phys. D: Appl. Phys., 11, 1085–1105
38. Mulser, P., and H. Schnabl (1983). Laser and Particle Beams, 1, 379–394
39. Mulser, P. (1984). Reduction of Rayleigh-Taylor growth due to viscosity effects. In R. Bock (Ed.), Studies on the Feasibility of Heavy Ion Beams for Inertial Confinement Fusion, GSI-84–5 Rep., Darmstadt, p.58Google Scholar
40. Nardi, E., and Z. Zinamon (1982). Phys. Rev. Letters, 49, 1251–1254
41. Nuckolls, J.H. (1972). Nature, 239, 139–142
42. Nuckolls, J.H. (1982). Physics Today/Sept., 25–31Google Scholar
43. Olsen, J.N., T.A. Mehlhorn, J. Maenchen, and D.J. Johnson (1985). Enhanced ion stopping powers in high-temperature targets. Accepted for publ. in J. Appl. Phys.Google Scholar
44. O’Neill, F. (1986). Rare gas halide lasers. In M.B. Hooper (Ed.), Laser-Plasma Interactions, SUSSP St. Andrews, 1985Google Scholar
45. Pakula, R., and R. Sigel (1984). On the confinement of an intense black-body radiation field generated by a laboratory pulsed power source, MPG 85, pp. 1–44Google Scholar
46. Peter, Th. (1985). Zur effektiven Ladung schneller Ionen in heissen dichten Plasmen. Preprint MPG Garching, pp. 1–88. To be publishedGoogle Scholar
47. Priedhorsky, W., D. Lier, R. Day, and D. Gerke (1981). Phys. Rev. Letters 47, 1661–1664
48. Rosen, M.D., J.D. Lindl, and A.R. Thiessen (1984). Simple models of high-gain targetscomparisons and generalizations. Laser Program Annual Report 83, LLNL Livermore, 3–5 to 3–9Google Scholar
49. Schneider, W. (1985). Acceleration Sf electrons by an intense Langmuir wave. In B. McNamara (Ed.), Twenty Years of Plasma Physics, World Scientific, Philadelphia, pp. 274–291Google Scholar
50. Short, R.W., R. Bingham, and E.A. Williams (1982). Phys. Fluids, 25, 2302–2303
51. Tahir, N., and K.A. Long (1983). Nucl. Fusion, 23, 887–916
52. Takabe, H., L. Montierth, and R.L. Morse (1983). Phys. Fluids, 26, 2299–2307
53. Toner, W.T. (1985). Fusion related experiments at the central laser facility. These Proc.Google Scholar
54. Verdon, C.P., R.L. McCrory, R.L. Morse, G.R. Baker, D.I. Meiron, and S.A. Orszag (1982). Phys. Fluids, 25, 1653–1674
55. Willi, O., P.T. Rumsby, and S. Sartang (1981). IEEE J. Quant. Electr., 17, 1909–1913
56. Yamanaka, C. (1985). Cannonball target experiments with the GEKKO laser system. In B. McNamara (Ed.). Twenty Years of Plasma Physics, World Scientific, Philadelphia, pp. 163–203Google Scholar
57. Young, F.C., D. Mosher, S.J. Stephanakis, Shyke A. Goldstein, and T.A. Mehlhorn (1982). Phys. Rev. Letters 49, 549–552
58. Youngs, D.L. (1984). Physica, 12D, 32–44Google Scholar