Skip to main content

Inertial Confinement Fusion with Lasers or Particle Beams

  • Conference paper
Trends in Quantum Electronics
  • 146 Accesses

Abstract

Controlled fusion of light nuclei for energy production occurs at hight temperatures, kT≳10keV. In order to obtain efficient burn the fuel has to be confined for a minimum time τ which is inversely proportional to the fuel density (Nuckolls, 1982). At low particle densities the fuel can be confined and kept in a steady state by magnetic fields. At densities higher than n ≅ 1017 cm−3 matter can be confined only by its own inertia, and so burn has to be achieved in a very short time; the less thermonuclear fuel is involved the shorter this will be. The principle of ICF is simple (Fig.1). A pellet of radius R, uniform density n and temperature T burns according to (Duderstadt, Moses, 1982)

$$\frac{d}{{dt}}\frac{n}{2} = \frac{{{n^2}}}{2} \left\langle \sigma \right.\left. v \right\rangle $$
(1.1)

where < σv > is the reaction rate of one fuel perticle averaged over its velocity distribution function. Owing to the high temperature the pellet disassembles with the rarefaction wave the edge of which moves inward at sound speed s = (kT/\({\bar m_i}\))½, where \({\bar m_i}\) stands for the average fuel ion mass. Keeping in mind thet 60% of the mass is contained the outer shell of thickness R/4 an adequate expression for the confinement time is τ = R/4s. With this the fractional burn η = 1 − n(τ)/n0 is obtained by integrating eq. (1.1)

$$\eta = \frac{{\rho R}}{{\rho R + \delta }}, \delta = 8{({\bar m_i}kT)^{1/2}}/ < \sigma v >= \delta (T).$$
(1.2)

The parameter δ is a function of temperature only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andronov, V.A., S.M. Bakhrakh, E.E. Meshkov, V.N. Mochov, V.V. Nikiforov, V.A. Pevnitskii and A.I. Tolshmyakov (1977). Soy. Phys. JETP 44, 424–427

    ADS  Google Scholar 

  • Atzeni, S. and A. Caruso (1983). Nucl. Fusion 23, 1092–1097

    Article  Google Scholar 

  • Atzeni, S. (1984). Nucl. Fusion 24, 1220–1227

    Article  Google Scholar 

  • Atzeni, S. and A. Caruso (1984). Nuovo Cimento 80, 71–103

    Article  Google Scholar 

  • Bangerter, R. and D. Meeker (1976). Ion beam intertiel fusion design. S. Lawrence Livermore Laboratory Rep. UCRL 78474

    Google Scholar 

  • Bangerter, R. O. (1984). Ion beam interactions with ICF tergets. In H. Hora, and G.H. Miley (Eds.). Laser Interaction and Related Plasma Phenomena’ vol. 6, Plenum Press, New York. pp. 1013–1027

    Google Scholar 

  • Betz, H.D. (1983). Applied Atomic Collision Physics, vol. 4, Academic Press, New York

    Google Scholar 

  • Bock, R., I. Hofmann, and R.C. Arnold (1984). Nucl. Sci. Applications, 2, 97–126

    Google Scholar 

  • Bodner, S.E. (1974). Phys. Rev. Letters, 33, 761–765

    Article  ADS  Google Scholar 

  • Bodner, S.E., M. Emery, J. Gardner, J. Grun, M. Herbst, S. Kacenjar, R. Lehmberg, C. Manka, E. McLean, S. Obenschain, B. Ripin, A. Schmitt, J. Stamper, and F. Young (1985). Symmetry, stability and efficiency in direct-drive laser fusion. Proc. 10th Int. Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, vol. 3, 155–161

    Google Scholar 

  • Craxton, R.S., and R.L. McCrory (1984). J. Appl. Phys., 56, 108–117

    Article  ADS  Google Scholar 

  • Duderstadt, J.J., G.A. Moses (1982). Inertial Confinement Fusion, John Wiley & Sons, New York, chap. 1

    Google Scholar 

  • Eidmann, K., F. Amiranoff, R. Fedosejevs, A.G.M. Maaswinkel, R. Petsch, R. Sigel, G. Spindler, Yung-lu-Teng, G. Tsakiris, S. Witkowski (1984). Phys. Rev. A30, 2568–2589

    Article  ADS  Google Scholar 

  • Emery, M.H., J.H. Gardner, and J.P. Boris (1982). Phys. Rev. Letters, 48, 677–680

    Article  ADS  Google Scholar 

  • Emery, M.H., J.H. Gardner, and J.P. Boris (1985). Magnetic fields and thermal flux inhibition in ICF. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 129–137

    Google Scholar 

  • Evans, R.G., A.J. Bennet, and G.J. Pert (1982). Phys. Rev. Letters, 49, 1639–1642

    Article  ADS  Google Scholar 

  • Fabre, E. (1985). Experiments on physics of direct laser drive implosion of spherical targets. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 139–147

    Google Scholar 

  • Forslund, D.W., J.M. Kindel, and E.L. Lindrnan (1977). Phys. Rev. Letters, 39, 284–288

    Article  ADS  Google Scholar 

  • Fraley, G.S., E.J. Linneburg, R.J. Maison, and R.L. Morse (1974). Phys. Fluids, 17, 476–489

    Article  ADS  Google Scholar 

  • Geissel, H., Y. Laichter, W.F.W. Schneider, and P. Armbruster (1983). Phys. Letters, 99A, 77–80

    Article  ADS  Google Scholar 

  • HIBALL-II (1985). An improved conceptual heavy ion beam driven fusion reactor study. KFK Karlsruhe

    Google Scholar 

  • Johnston, Th.H. (1984). Inertial confinement fusion: review and perspective. Proc. IEEE 72, 548–594

    Google Scholar 

  • Kidder, R.E. (1976). Nucl. Fusion, 16, 405–408

    Article  ADS  Google Scholar 

  • Kidder, R.E. (1979). Nucl. Fusion, 19, 223–234

    Article  ADS  Google Scholar 

  • Kull, H.J. (1982). Perfect fluid model of Rayleigh-Taylor instability. IAP-Rep. 102/82, Darmstadt

    Google Scholar 

  • Kull, H. (1983). Phys. Rev. Letters, 51, 1434–1437

    Article  ADS  Google Scholar 

  • Kull, H.J. (1983). Convective stabilization in the incompressible Rayleigh-Taylor instability. IAP-Rep. 109/85, Darmstadt

    Google Scholar 

  • Lehmberg, R.H., and S.P. Obenschain (1983). Opt. Comm., 46, 27–29

    Article  ADS  Google Scholar 

  • Lindl, J.D., and W.C. Mead (1975). Phys. Rev. Letters, 34, 1273–1276

    Article  ADS  Google Scholar 

  • Lindl, J.L., J.W-K. Mark (1985). Laser and Particle Beams, 3, 37–39

    Article  ADS  Google Scholar 

  • Max, C.E., J.D. Lindl, and W.C. Mead (1983). Nucl. Fusion, 23, 131–145

    Article  Google Scholar 

  • Meger, R.A., R.J. Commisso, G. Cooperstein, and S.A. Goldstein (1977). J. Appl. Phys., 48, 1004–1006

    Article  ADS  Google Scholar 

  • McCrory, R.L. (1985). Short wavelength, direct drive laser fusion experiments at the laboratory for laser energetics. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 37–48

    Google Scholar 

  • Metzler, N., and J. Meyer-ter-Vehn (1984). Laser and Particle Beams, 2, 27–48

    Article  ADS  Google Scholar 

  • Meyer-ter-Vehn, J. (1982). Nucl. Fusion, 22, 561–566

    Article  Google Scholar 

  • More, R.M. (1981). Atomic physics in inertial confinement fusion. Lawrence Livermore Laboratory Rep. UCRL 84991, Part I, pp. 200–220

    Google Scholar 

  • Mulser, P., C. van Kessel (1978). J. Phys. D: Appl. Phys., 11, 1085–1105

    Article  ADS  Google Scholar 

  • Mulser, P., and H. Schnabl (1983). Laser and Particle Beams, 1, 379–394

    Article  ADS  Google Scholar 

  • Mulser, P. (1984). Reduction of Rayleigh-Taylor growth due to viscosity effects. In R. Bock (Ed.), Studies on the Feasibility of Heavy Ion Beams for Inertial Confinement Fusion, GSI-84–5 Rep., Darmstadt, p.58

    Google Scholar 

  • Nardi, E., and Z. Zinamon (1982). Phys. Rev. Letters, 49, 1251–1254

    Article  ADS  Google Scholar 

  • Nuckolls, J.H. (1972). Nature, 239, 139–142

    Article  ADS  Google Scholar 

  • Nuckolls, J.H. (1982). Physics Today/Sept., 25–31

    Google Scholar 

  • Olsen, J.N., T.A. Mehlhorn, J. Maenchen, and D.J. Johnson (1985). Enhanced ion stopping powers in high-temperature targets. Accepted for publ. in J. Appl. Phys.

    Google Scholar 

  • O’Neill, F. (1986). Rare gas halide lasers. In M.B. Hooper (Ed.), Laser-Plasma Interactions, SUSSP St. Andrews, 1985

    Google Scholar 

  • Pakula, R., and R. Sigel (1984). On the confinement of an intense black-body radiation field generated by a laboratory pulsed power source, MPG 85, pp. 1–44

    Google Scholar 

  • Peter, Th. (1985). Zur effektiven Ladung schneller Ionen in heissen dichten Plasmen. Preprint MPG Garching, pp. 1–88. To be published

    Google Scholar 

  • Priedhorsky, W., D. Lier, R. Day, and D. Gerke (1981). Phys. Rev. Letters 47, 1661–1664

    Article  ADS  Google Scholar 

  • Rosen, M.D., J.D. Lindl, and A.R. Thiessen (1984). Simple models of high-gain targetscomparisons and generalizations. Laser Program Annual Report 83, LLNL Livermore, 3–5 to 3–9

    Google Scholar 

  • Schneider, W. (1985). Acceleration Sf electrons by an intense Langmuir wave. In B. McNamara (Ed.), Twenty Years of Plasma Physics, World Scientific, Philadelphia, pp. 274–291

    Google Scholar 

  • Short, R.W., R. Bingham, and E.A. Williams (1982). Phys. Fluids, 25, 2302–2303

    Article  ADS  MATH  Google Scholar 

  • Tahir, N., and K.A. Long (1983). Nucl. Fusion, 23, 887–916

    Article  Google Scholar 

  • Takabe, H., L. Montierth, and R.L. Morse (1983). Phys. Fluids, 26, 2299–2307

    Article  ADS  MATH  Google Scholar 

  • Toner, W.T. (1985). Fusion related experiments at the central laser facility. These Proc.

    Google Scholar 

  • Verdon, C.P., R.L. McCrory, R.L. Morse, G.R. Baker, D.I. Meiron, and S.A. Orszag (1982). Phys. Fluids, 25, 1653–1674

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Willi, O., P.T. Rumsby, and S. Sartang (1981). IEEE J. Quant. Electr., 17, 1909–1913

    Article  ADS  Google Scholar 

  • Yamanaka, C. (1985). Cannonball target experiments with the GEKKO laser system. In B. McNamara (Ed.). Twenty Years of Plasma Physics, World Scientific, Philadelphia, pp. 163–203

    Google Scholar 

  • Young, F.C., D. Mosher, S.J. Stephanakis, Shyke A. Goldstein, and T.A. Mehlhorn (1982). Phys. Rev. Letters 49, 549–552

    Article  ADS  Google Scholar 

  • Youngs, D.L. (1984). Physica, 12D, 32–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mulser, P. (1986). Inertial Confinement Fusion with Lasers or Particle Beams. In: Prokhorov, A.M., Ursu, I. (eds) Trends in Quantum Electronics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10624-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10624-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10626-6

  • Online ISBN: 978-3-662-10624-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics