Advertisement

Inertial Confinement Fusion with Lasers or Particle Beams

  • P. Mulser
Conference paper

Abstract

Controlled fusion of light nuclei for energy production occurs at hight temperatures, kT≳10keV. In order to obtain efficient burn the fuel has to be confined for a minimum time τ which is inversely proportional to the fuel density (Nuckolls, 1982). At low particle densities the fuel can be confined and kept in a steady state by magnetic fields. At densities higher than n ≅ 1017 cm−3 matter can be confined only by its own inertia, and so burn has to be achieved in a very short time; the less thermonuclear fuel is involved the shorter this will be. The principle of ICF is simple (Fig.1). A pellet of radius R, uniform density n and temperature T burns according to (Duderstadt, Moses, 1982)
$$\frac{d}{{dt}}\frac{n}{2} = \frac{{{n^2}}}{2} \left\langle \sigma \right.\left. v \right\rangle $$
(1.1)
where < σv > is the reaction rate of one fuel perticle averaged over its velocity distribution function. Owing to the high temperature the pellet disassembles with the rarefaction wave the edge of which moves inward at sound speed s = (kT/\({\bar m_i}\))½, where \({\bar m_i}\) stands for the average fuel ion mass. Keeping in mind thet 60% of the mass is contained the outer shell of thickness R/4 an adequate expression for the confinement time is τ = R/4s. With this the fractional burn η = 1 − n(τ)/n0 is obtained by integrating eq. (1.1)
$$\eta = \frac{{\rho R}}{{\rho R + \delta }}, \delta = 8{({\bar m_i}kT)^{1/2}}/ < \sigma v >= \delta (T).$$
(1.2)
The parameter δ is a function of temperature only.

Keywords

Rarefaction Wave Langmuir Wave Ponderomotive Force Inertial Confinement Fusion Atwood Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andronov, V.A., S.M. Bakhrakh, E.E. Meshkov, V.N. Mochov, V.V. Nikiforov, V.A. Pevnitskii and A.I. Tolshmyakov (1977). Soy. Phys. JETP 44, 424–427ADSGoogle Scholar
  2. Atzeni, S. and A. Caruso (1983). Nucl. Fusion 23, 1092–1097CrossRefGoogle Scholar
  3. Atzeni, S. (1984). Nucl. Fusion 24, 1220–1227CrossRefGoogle Scholar
  4. Atzeni, S. and A. Caruso (1984). Nuovo Cimento 80, 71–103CrossRefGoogle Scholar
  5. Bangerter, R. and D. Meeker (1976). Ion beam intertiel fusion design. S. Lawrence Livermore Laboratory Rep. UCRL 78474Google Scholar
  6. Bangerter, R. O. (1984). Ion beam interactions with ICF tergets. In H. Hora, and G.H. Miley (Eds.). Laser Interaction and Related Plasma Phenomena’ vol. 6, Plenum Press, New York. pp. 1013–1027Google Scholar
  7. Betz, H.D. (1983). Applied Atomic Collision Physics, vol. 4, Academic Press, New YorkGoogle Scholar
  8. Bock, R., I. Hofmann, and R.C. Arnold (1984). Nucl. Sci. Applications, 2, 97–126Google Scholar
  9. Bodner, S.E. (1974). Phys. Rev. Letters, 33, 761–765ADSCrossRefGoogle Scholar
  10. Bodner, S.E., M. Emery, J. Gardner, J. Grun, M. Herbst, S. Kacenjar, R. Lehmberg, C. Manka, E. McLean, S. Obenschain, B. Ripin, A. Schmitt, J. Stamper, and F. Young (1985). Symmetry, stability and efficiency in direct-drive laser fusion. Proc. 10th Int. Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, vol. 3, 155–161Google Scholar
  11. Craxton, R.S., and R.L. McCrory (1984). J. Appl. Phys., 56, 108–117ADSCrossRefGoogle Scholar
  12. Duderstadt, J.J., G.A. Moses (1982). Inertial Confinement Fusion, John Wiley & Sons, New York, chap. 1Google Scholar
  13. Eidmann, K., F. Amiranoff, R. Fedosejevs, A.G.M. Maaswinkel, R. Petsch, R. Sigel, G. Spindler, Yung-lu-Teng, G. Tsakiris, S. Witkowski (1984). Phys. Rev. A30, 2568–2589ADSCrossRefGoogle Scholar
  14. Emery, M.H., J.H. Gardner, and J.P. Boris (1982). Phys. Rev. Letters, 48, 677–680ADSCrossRefGoogle Scholar
  15. Emery, M.H., J.H. Gardner, and J.P. Boris (1985). Magnetic fields and thermal flux inhibition in ICF. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 129–137Google Scholar
  16. Evans, R.G., A.J. Bennet, and G.J. Pert (1982). Phys. Rev. Letters, 49, 1639–1642ADSCrossRefGoogle Scholar
  17. Fabre, E. (1985). Experiments on physics of direct laser drive implosion of spherical targets. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 139–147Google Scholar
  18. Forslund, D.W., J.M. Kindel, and E.L. Lindrnan (1977). Phys. Rev. Letters, 39, 284–288ADSCrossRefGoogle Scholar
  19. Fraley, G.S., E.J. Linneburg, R.J. Maison, and R.L. Morse (1974). Phys. Fluids, 17, 476–489ADSCrossRefGoogle Scholar
  20. Geissel, H., Y. Laichter, W.F.W. Schneider, and P. Armbruster (1983). Phys. Letters, 99A, 77–80ADSCrossRefGoogle Scholar
  21. HIBALL-II (1985). An improved conceptual heavy ion beam driven fusion reactor study. KFK KarlsruheGoogle Scholar
  22. Johnston, Th.H. (1984). Inertial confinement fusion: review and perspective. Proc. IEEE 72, 548–594Google Scholar
  23. Kidder, R.E. (1976). Nucl. Fusion, 16, 405–408ADSCrossRefGoogle Scholar
  24. Kidder, R.E. (1979). Nucl. Fusion, 19, 223–234ADSCrossRefGoogle Scholar
  25. Kull, H.J. (1982). Perfect fluid model of Rayleigh-Taylor instability. IAP-Rep. 102/82, DarmstadtGoogle Scholar
  26. Kull, H. (1983). Phys. Rev. Letters, 51, 1434–1437ADSCrossRefGoogle Scholar
  27. Kull, H.J. (1983). Convective stabilization in the incompressible Rayleigh-Taylor instability. IAP-Rep. 109/85, DarmstadtGoogle Scholar
  28. Lehmberg, R.H., and S.P. Obenschain (1983). Opt. Comm., 46, 27–29ADSCrossRefGoogle Scholar
  29. Lindl, J.D., and W.C. Mead (1975). Phys. Rev. Letters, 34, 1273–1276ADSCrossRefGoogle Scholar
  30. Lindl, J.L., J.W-K. Mark (1985). Laser and Particle Beams, 3, 37–39ADSCrossRefGoogle Scholar
  31. Max, C.E., J.D. Lindl, and W.C. Mead (1983). Nucl. Fusion, 23, 131–145CrossRefGoogle Scholar
  32. Meger, R.A., R.J. Commisso, G. Cooperstein, and S.A. Goldstein (1977). J. Appl. Phys., 48, 1004–1006ADSCrossRefGoogle Scholar
  33. McCrory, R.L. (1985). Short wavelength, direct drive laser fusion experiments at the laboratory for laser energetics. Proc. 10th Int.Conf. Plasma Phys. & Controlled Fusion Res., IAEA, Vienna, Vol. 3, 37–48Google Scholar
  34. Metzler, N., and J. Meyer-ter-Vehn (1984). Laser and Particle Beams, 2, 27–48ADSCrossRefGoogle Scholar
  35. Meyer-ter-Vehn, J. (1982). Nucl. Fusion, 22, 561–566CrossRefGoogle Scholar
  36. More, R.M. (1981). Atomic physics in inertial confinement fusion. Lawrence Livermore Laboratory Rep. UCRL 84991, Part I, pp. 200–220Google Scholar
  37. Mulser, P., C. van Kessel (1978). J. Phys. D: Appl. Phys., 11, 1085–1105ADSCrossRefGoogle Scholar
  38. Mulser, P., and H. Schnabl (1983). Laser and Particle Beams, 1, 379–394ADSCrossRefGoogle Scholar
  39. Mulser, P. (1984). Reduction of Rayleigh-Taylor growth due to viscosity effects. In R. Bock (Ed.), Studies on the Feasibility of Heavy Ion Beams for Inertial Confinement Fusion, GSI-84–5 Rep., Darmstadt, p.58Google Scholar
  40. Nardi, E., and Z. Zinamon (1982). Phys. Rev. Letters, 49, 1251–1254ADSCrossRefGoogle Scholar
  41. Nuckolls, J.H. (1972). Nature, 239, 139–142ADSCrossRefGoogle Scholar
  42. Nuckolls, J.H. (1982). Physics Today/Sept., 25–31Google Scholar
  43. Olsen, J.N., T.A. Mehlhorn, J. Maenchen, and D.J. Johnson (1985). Enhanced ion stopping powers in high-temperature targets. Accepted for publ. in J. Appl. Phys.Google Scholar
  44. O’Neill, F. (1986). Rare gas halide lasers. In M.B. Hooper (Ed.), Laser-Plasma Interactions, SUSSP St. Andrews, 1985Google Scholar
  45. Pakula, R., and R. Sigel (1984). On the confinement of an intense black-body radiation field generated by a laboratory pulsed power source, MPG 85, pp. 1–44Google Scholar
  46. Peter, Th. (1985). Zur effektiven Ladung schneller Ionen in heissen dichten Plasmen. Preprint MPG Garching, pp. 1–88. To be publishedGoogle Scholar
  47. Priedhorsky, W., D. Lier, R. Day, and D. Gerke (1981). Phys. Rev. Letters 47, 1661–1664ADSCrossRefGoogle Scholar
  48. Rosen, M.D., J.D. Lindl, and A.R. Thiessen (1984). Simple models of high-gain targetscomparisons and generalizations. Laser Program Annual Report 83, LLNL Livermore, 3–5 to 3–9Google Scholar
  49. Schneider, W. (1985). Acceleration Sf electrons by an intense Langmuir wave. In B. McNamara (Ed.), Twenty Years of Plasma Physics, World Scientific, Philadelphia, pp. 274–291Google Scholar
  50. Short, R.W., R. Bingham, and E.A. Williams (1982). Phys. Fluids, 25, 2302–2303ADSMATHCrossRefGoogle Scholar
  51. Tahir, N., and K.A. Long (1983). Nucl. Fusion, 23, 887–916CrossRefGoogle Scholar
  52. Takabe, H., L. Montierth, and R.L. Morse (1983). Phys. Fluids, 26, 2299–2307ADSMATHCrossRefGoogle Scholar
  53. Toner, W.T. (1985). Fusion related experiments at the central laser facility. These Proc.Google Scholar
  54. Verdon, C.P., R.L. McCrory, R.L. Morse, G.R. Baker, D.I. Meiron, and S.A. Orszag (1982). Phys. Fluids, 25, 1653–1674MathSciNetADSMATHCrossRefGoogle Scholar
  55. Willi, O., P.T. Rumsby, and S. Sartang (1981). IEEE J. Quant. Electr., 17, 1909–1913ADSCrossRefGoogle Scholar
  56. Yamanaka, C. (1985). Cannonball target experiments with the GEKKO laser system. In B. McNamara (Ed.). Twenty Years of Plasma Physics, World Scientific, Philadelphia, pp. 163–203Google Scholar
  57. Young, F.C., D. Mosher, S.J. Stephanakis, Shyke A. Goldstein, and T.A. Mehlhorn (1982). Phys. Rev. Letters 49, 549–552ADSCrossRefGoogle Scholar
  58. Youngs, D.L. (1984). Physica, 12D, 32–44Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. Mulser
    • 1
  1. 1.Institut für Angewandte PhysicsTechnische HochschuleDarmstadtF.R. Germany

Personalised recommendations