Skip to main content

Quercus robur L. (Pedunculate Oak)

  • Chapter
Trees IV

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 35))

  • 398 Accesses

Abstract

The genus Quercus consists of about 450 species distributed throughout North temperate regions, the Mediterranean basin, and some montane tropics and subtropics. Although recent phylogenetic studies have provided the basis for an infrageneric classification of the genus, the species distribution in the Quercus complex is still a matter of debate (Nixon 1993). Hybridization and gene introgression produce many morphologically intermediate forms between pure parental species, as in Q. robur and Q. petraea. Little difference was found between these two species even in ribosomal DNA and chloroplast DNA polymorphism (Petit et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellarosa R (1989) Oak (Quercus spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 5. Trees, II. Springer, Berlin Heidelberg New York, pp 387–401

    Google Scholar 

  • Bennett LK, Davies FT Jr (1986) In vitro propagation of Quercus shumardii seedlings. HortScience 21 (4): 1045–1047

    CAS  Google Scholar 

  • Binding H, Nehls R (1977) Regeneration of isolated protoplasts to plants in Solanum dulcamara L. Z Pflanzenphysiol 85: 279–280

    Google Scholar 

  • Borzan Z (1993) Grafting of oaks with variegated leaves. Ann Sci For 50 (Suppl 1): 330s-335s

    Google Scholar 

  • Bueno MA, Astorga R, Manzanera JA (1992) Plant regeneration through somatic embryogenesis in Quercus suber. Physiol Plant 85: 30–34

    Article  Google Scholar 

  • Chalupa V (1984) In vitro propagation of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Biol Plant 26(5): 374–377

    Article  CAS  Google Scholar 

  • Chalupa V (1990) Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Plant Cell Rep 9: 398–401

    Article  CAS  Google Scholar 

  • Chalupa V (1993) Vegetative propagation of oak (Quercus robur and Q petraea) by cutting and tissue culture. Ann Sci For 50 (Suppl 1): 295s-307s

    Article  Google Scholar 

  • Civínová B, Sladky Z (1987) A study of the regeneration capacity of oak (Quercus robur L.). Scripta Fac Sci Nat Univ Purk Brun 17(3–4): 103–110

    Google Scholar 

  • Dunstan DJ, Short KC (1977) Improved growth of tissue cultures of the onion Allium cepa. Physiol Plant 41: 70–72

    Article  Google Scholar 

  • Evans J (1984) Silviculture of broadleaved woodland. For Comm Bull (Lond) 62: 232 pp

    Google Scholar 

  • Evers PW, Donkers J, Prat A, Vermeer E (1988) Micropropagation of forest trees through tissue culture. Pudoc, Wageningen, 84 pp

    Google Scholar 

  • Evers PW, Vermeer E, Eeden S van (1993) Rejuvenation of Quercus robur. Ann Sci For 50 (Suppl 1): 330s–335s

    Article  Google Scholar 

  • Favre JM, Juncker B (1987) In vitro growth of buds taken from seedlings and adult plant material in Quercus robur L. Plant Cell Tissue Organ Cult 8: 49–60

    Article  CAS  Google Scholar 

  • Favre JM, Scalbert A, Herve du Penhoat CLM (1993) Quercus spp. (oak): in vitro culture and production of tannins. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 24. Medicinal and aromatic plants V. Springer, Berlin Heidelberg New York, pp 300–312

    Google Scholar 

  • Féraud-Keller C, Espagnac H (1989) Conditions d’apparition d’une embryogénèse somatique sur des cals issus de la culture de tissues foliaires du chêne vert (Quercus ilex). Can J Bot 67: 1066–1070

    Google Scholar 

  • Gebhardt K, Frühwacht-Wilms U, Weisgerber H (1993) Micropropagation and restricted-growth storage of adult oak genotypes. Ann Sci For 50 (Suppl 1): 323s-329s

    Article  Google Scholar 

  • Gingas VM, Lineberger RD (1989) Asexual embryogenesis and plant regeneration in Quercus. Plant Cell Tissue Organ Cult 17: 191–203

    Article  Google Scholar 

  • González-Benito ME, Pérez-Ruiz C (1992) Cryopreservation of Quercus faginea embryonic axes. Cryobiology 29: 685–690

    Article  Google Scholar 

  • Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107: 161–170

    Article  Google Scholar 

  • Guthke J, Spethmann W (1993) Physiological and pathological aspects of long-term storage of acorns. Ann Sci For 50 (Suppl): 384–387

    Article  Google Scholar 

  • Hakman I, Arnold S von (1988) Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (white spruce). Physiol Plant 72: 579–587

    Article  CAS  Google Scholar 

  • Jacquiot C (1952) Sur les phénomènes d’histogenèse observés dans des cultures in vitro de tissu cambial de chênes (Quercus sessiliflora Sm., Q. pedunculata Ehr., Q. suber L.). C R Hebd Seances Acad Sci Paris 234: 1468–1470

    Google Scholar 

  • Jörgensen J (1993) Embryogenesis in Quercus petraea. Ann Sci For 50 (Suppl 1): 344s–350s

    Article  Google Scholar 

  • Krajci I, Gross GG (1987) Formation of gallotannins in callus cultures from oak (Quercus robur). Phytochemistry 26(1): 141–143

    Article  Google Scholar 

  • Lee SK (1977) On the asymptotic variances of u-terms in log-linear models of multidimensional contingency tables. J Am Statist Assoc 72: 412–419

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18: 100–127

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proc Int Plant Propagators’ Soc 30: 421–427

    Google Scholar 

  • Maâtaoui ME El, Espagnac H (1987) Néoformation de structures de type embryons somatiques sur des cultures de tissues de chêne liège (Quercus suber L.). C R Acad Sci Paris 304 Série III (3): 83–88

    Google Scholar 

  • Mac Ant Saoir S, Kabrianis M (1993) Establishment of explants from 200-year-old Quercus petraea in culture. Ann Sci For 50 (Suppl 1): 336s–339s

    Google Scholar 

  • Manzanera JA (1990) Propagación vegetativa de plántulas de alcornoque (Quercus suber L.) por cultivo in vitro. Investigación Agraria. Prod Prot Veg 5(3): 371–382

    Google Scholar 

  • Manzanera JA (1992) Inducción de embriogenesis somatica en roble (Quercus robur L.). Invest Agrar Sist Recursos For 1(1): 73–81

    Google Scholar 

  • Manzanera JA, Pardos JA (1990) Micropropagation ofjuvenile and adult Quercus suber L. Plant Cell Tissue Organ Cult 21: 1–8

    Article  CAS  Google Scholar 

  • Manzanera JA, Astorga R, Bueno MA (1993) Somatic embryo induction and germination in Quercus suber L. Silvae Genet 42(2–3): 90–93

    Google Scholar 

  • Meier-Dinkel A (1987) In vitro vermehrung und weiterkultur von stieleiche (Quercus robur L.) und Traubeneiche (Quercus petraea (Matt.) Liebl.). Allg Forst Jagdztg 158: 199–204

    Google Scholar 

  • Meier-Dinkel A, Becker B, Duckstein D (1993) Micropropagation and ex vitro rooting of several clones of late-flushing Quercus robur L. Ann Sci For 50: (Suppl 1): 319s–322s

    Article  Google Scholar 

  • Molinas ML, Verdaguer D (1993) Lignotuber ontogeny in the cork-oak (Quercus suber; Fagaceae). II. Germination and young seedling. Am J Bot 80(2): 182–191

    Article  Google Scholar 

  • Moon HK, Yi SS (1993) Cutting propagation of Q. acutissima clones after rejuvenation through serial grafting. Ann Sci For 50 (Suppl 1): 314s-318s

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci For 50 (Suppl 1): 25s-34s

    Article  Google Scholar 

  • Pardos JA (1981) In vitro plant formation from stem pieces of Quercus suber L. Proc Coll Int sur la Cult in vitro des Essences For IUFRO (AFOCEL, ed), Fontainebleau, France, pp 186–190

    Google Scholar 

  • Perrin H (1954) Sylviculture. Tome II: Le traitement des Fôrets. Théorie et practique des techniques sylvicoles. Ecole Nationale des Eaux et Forêts, Nancy, 409 pp

    Google Scholar 

  • Petit RJ, Wagner DB, Kremer A (1993) Ribosomal DNA and chloroplast DNA polymorphisms in a mixed stand of Quercus robur and Q. petraea. Ann Sci For 50 (Suppl 1): 41s-47s

    Article  Google Scholar 

  • Pevalek-Kozlina B, Jelaska S (1986) In vitro growth and development of oaks (Quercus robur and Quercus petraea). Acta Bot Croat 45: 55–61

    CAS  Google Scholar 

  • Quatrano RS (1987) The role of hormones during seed development. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Martinus Nijhoff, Dordrecht, pp 494–514

    Chapter  Google Scholar 

  • Roberts DR (1991) Abscisic acid and mannitol promote early development, maturation and storage protein accumulation in somatic embryos of interior spruce. Physiol Plant 83: 247–254

    Article  CAS  Google Scholar 

  • Roberts EH, King MW (1980) Storage of recalcitrant seeds. In: Withers LA, Williams JT (eds) Crop genetic resources: the conservation of difficult material. Int Union Biol Sci Ser B42: 39–48

    Google Scholar 

  • Romano A, Noronha C, Martins-Louçâo MA (1992) Influence of growth regulators on shoot proliferation in Quercus suber L. Ann Bot 70: 531–536

    CAS  Google Scholar 

  • San-José MC, Vieitez AM, Vieitez E (1985) Establecimiento y multiplicación in vitro de brotes del género Quercus. Fyton 45(19): 31–40

    Google Scholar 

  • San-José MC, Ballester A, Vieitez AM (1988) Factors affecting in vitro propagation of Quercus robur L. Tree Physiol 4: 281–290

    Article  PubMed  Google Scholar 

  • San-José MC, Vieitez AM, Ballester A (1990) Clonai propagation of juvenile and adult trees of sessile oak by tissue culture techniques. Silvae Genet 39(2): 50–54

    Google Scholar 

  • Scalbert A, Monties B, Favre JM (1988) Polyphenols of Quercus robur: adult tree and in vitro-grown calli and shoots. Phytochemistry 27(11): 3483–3488

    Article  CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204

    Article  CAS  Google Scholar 

  • Schier GA (1983) Vegetative regeneration of Gambel oak and Chokecherry from excised rhizomes. For Sci 29(3): 499–502

    Google Scholar 

  • Schwarz OJ (1987) Plant growth regulator effects in the in vitro propagation of three hardwood genera: Castanea, Juglans, and Quercus. Plant Growth Regul 6: 113–135

    Article  CAS  Google Scholar 

  • Schwarz OJ, Schlarbaum SE (1993) Axillary bud proliferation of 2 North American oak species: Quercus alba and Quercus rubra. Ann Sci For 50 (Suppl 1): 340s–343s

    Article  Google Scholar 

  • Seckinger GR, McCown BH, Struckmeyer BE (1979) Production of anomalous structures in Quercus rubra L. callus cultures. Am J Bot 66: 993–996

    Article  Google Scholar 

  • Shoyama Y, Sasaki Y, Nishioka I, Suzaki T (1992) Clonal propagation of oak (Quercus acutissima Carruth). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 18. High-tech and micropropagation II, Springer, Berlin Heidelberg New York, pp 179–192

    Google Scholar 

  • Srivastava PS, Steinhauer A (1982) In vitro culture of embryo segments of Quercus lebani: organogenesis and callus growth as a differential response to experimental conditions. Z Pflanzenphysiol 106: 93–96

    Google Scholar 

  • Vicioso C (1950) Revision del género Quercus en España. IFIE, Minist Agric, 194 pp

    Google Scholar 

  • Vieitez AM, San-José MC, Vieitez E (1985) In vitro plantlet regeneration from juvenile and mature Quercus robur L. J Hortic Sci 60(1): 99–106

    Google Scholar 

  • Vieitez AM, Pintos F, San-José MC, Ballester A (1993) In vitro shoot proliferation determined by explant orientation of juvenile and mature Quercus rubra L. Tree Physiol 12: 107–117

    Article  PubMed  Google Scholar 

  • Volkaert H, Schoofs J, Pieters A, De Langhe E (1990) Influence of explant source on in vitro axillary shoot formation in oak seedlings. Tree Physiol 6: 87–93

    Article  PubMed  Google Scholar 

  • Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489

    Article  CAS  Google Scholar 

  • Zeevart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39: 439–473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manzanera, J.A., Bueno, M.A., Pardos, J.A. (1996). Quercus robur L. (Pedunculate Oak). In: Bajaj, Y.P.S. (eds) Trees IV. Biotechnology in Agriculture and Forestry, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10617-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10617-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08226-9

  • Online ISBN: 978-3-662-10617-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics