Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 65))

Abstract

There appears to be great potential for applications of ion tracks in polymers far beyond what has been realized already up to now. To expand the use of tracks one has, however, to modify the tracks, which can be performed by steps such as doping, etching, annealing, adsorption or chemisorption, galvanic or electrodeless material deposition, γ, electron, or low-energy ion irradiation, lithographic or evaporation processes, and others. As in the previous chapters, we also have to distinguish here between manipulations of as-implanted (latent) and etched tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fink D, Petrov A, Stolterfoht N, Wilhelm M, Hoffmann V, Richter A, Behar M, Farenzena L, Hirata K, Kobayashi Y, Chadderton LT, Schulz A, Fahrner WR, Creation of nanoscale objects by swift heavy ion track manipulations. Proc 2nd Intl Symp on Material Chemistry in Nuclear Environment, March 13–15, 2002, Tsukuba, Japan, 2002

    Google Scholar 

  2. Herden V (2001) Das Verhalten von lichtinduzierten Ladungsträgern in Polysilanen unter besonderer Berücksichtigung von Dotiereungen and strahlen-chemischer Vernetzung. PhD. Thesis, Technical University Berlin, No. D83 (in German)

    Google Scholar 

  3. Fink D, Müller M, Nakao Y, Hirata K, Kobayashi Y, Behar M, Kaschny JR, Vacik J, Hnatowicz V, Ion-induced redistribution of palladium in polymethyl methacrylate. Polym Instr Meth B166 /167, 610–614 (2000)

    Article  Google Scholar 

  4. Biswas A, Awasthi DK, Kanzow J, Ding SJ, Fink D, Gupta R, Zaporojtchenko V, Faupel F, Nanostructural modifications in Au cluster arrays distributed in Teflon AF layers upon MeV heavy ion impact. To be published in 2003

    Google Scholar 

  5. Apel PYu, Kuznetsov VI, Ovchinnikov VV (1985) Capillary contraction of pores in polymeric nuclear membranes. Kolloidnyi Zhurnal 49, 537–538 (in Russian);

    Google Scholar 

  6. and Apel PYu, Ovchinnikov V, Capillary Contraction of small pores and latent track parameter measurements in polymers. Rad Eff Defects Solilds 126, 217220 (1993)

    Google Scholar 

  7. Faupel F, Metal diffusion during metallization of high-temperature polymers. In: Mittal KL (ed.): Metallized Plastics. Marcel Dekker Inc., New York 1998, pp. 79–83

    Google Scholar 

  8. Hulteen JC, Martin CR, Template synthesis of nanoparticles in nanoporous membranes. In: Fendler JH (ed.): Nanoparticles and Nanostructured Films Wiley-VCH, Weinheim, 1998, pp. 235–262

    Chapter  Google Scholar 

  9. Che G, Lakshmi BB, Martin CR, Fisher ER, Ruoff RS, Chemical vapor deposition based systhesis of carbon nanotubes and nanofibers using a template method. Chem Mater 10, 260–267 (1998)

    Article  CAS  Google Scholar 

  10. Boag NM, Dowben PA, Design of organometallics for vapor phase metallization of plastics. In: Mittal KL (ed.): Metallized Plastics, Marcel Dekker Inc., New York, 1998, pp. 1–7

    Google Scholar 

  11. Gutowski W, Thermodynamics of adhesion. In: Lee L-H (ed.): Fundamentals of Adhesion. Plenum Press, New York and London (1991)

    Google Scholar 

  12. Dobrev D, Vetter J, Neumann R, Growth of potassium iodide single-crystals using ion track membranes as templates. Nucl Instrum Methods B146, 513517 (1998)

    Google Scholar 

  13. Berdinsky AS, Fink D, Petrov AV, Müller M, Chadderton LT, Chubaci JF, Tabacnics MH, Formation and conductive properties of fullerite in etched ion tracks in a polymer film Proc MRS Fall Meeting, Boston 27.11.-1.12. 2001, Contribution Y4. 7, 2001

    Google Scholar 

  14. Petrov A, Production of micro-and nanoelectrotechnic devices based on ion tracks in insulators. PhD. Thesis, Fernuniversität Hagen, 2004

    Google Scholar 

  15. Ragan R, Sih V, Atwater HA, Non-lithographic fabrication of dense Sn nanowire arrays. Proc MRS Boston, Fall Meeting. Contribution V4.3 (2001); and Borca-Tasciuc DA, Chen G, Thermal characterisation of nanowire array in cx-Al2O3 matrix. Proc MRS Boston 27.11.-1.12.2001, Contribution V2. 7, 2001

    Google Scholar 

  16. Nishizawa M, Mukai K, Kuwabata S, Martin CR, Yoneyama H, Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J Electrochem Soc 144, 1923–1926 (1997)

    Article  CAS  Google Scholar 

  17. Tannenbaum R, Self-assembly of metal nanoclusters in block copolymers. Proc MRS Boston 27.11.-1.12.2001, Contribution V2. 1, 2001

    Google Scholar 

  18. Mantese JV, Micheli AL, Hamdi AH, Vest RW, Metalorganic deposition (MOD): a nonvacuum, spin-on, liquid-based, thin film method. MRS Bull, Oct 1989, pp. 48–53, and references therein;

    Google Scholar 

  19. and: Hamdi AH, Mantese JV, Micheli AL, Laugel RCD, Dungan DF, Zhang ZH, Padmanabhan KR, Formation of thin film high 71 superconductors by metallorganic deposition. Appl Phys Lett 51, 2152–2154 (1987)

    Google Scholar 

  20. Micheli AL, Chang SC, Hicks DB, Tin oxide gas sensoring microsensors from metalor-ganic deposited CMOD thin films Ceram Eng Sci Proc 8, 1095–1105 (1987); and: Xu JJ, Shaikh AS, Vest RW, Indium tin oxide films from metallorganic precursors. Thin Solid Films 161, 273–280 (1988)

    Article  Google Scholar 

  21. Wu CG, Bein T, Conducting polyaniline filaments in a mesoporous channel host. Science 264, 1757–1758 (1994)

    Article  CAS  Google Scholar 

  22. Al Mawlawi D, Coombs N, Moskovits M, Magnetic properties of Fe deposited into anodic aluminium oxide pores a a function of particle size. J Appl Phys 70, 4421–4425 (1991)

    Article  Google Scholar 

  23. Whitney TM, Jiang JS, Searson PC, Chien CL, Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316–1319 (1993)

    Article  CAS  Google Scholar 

  24. Shao I, Searson PC, Cammarata RC, Vereecken PM, Chien CL, Electrochemical deposition of FeCo and FeCoV thin films and nanowire arrays. Proc MRS Boston 27.11.-1.12. 2001, Contribution M5. 4

    Google Scholar 

  25. Hjort K, The European network on ion track technology. Presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25, 2002, Giordano Naxos, Italy

    Google Scholar 

  26. Enculescu I, Spohr R, Electrodeposition of Cu/Co multilayered nanowires. Proc of the Workshop on European Network on Ion Track Technology, Caen, France, 24–26 Feb. 2002

    Google Scholar 

  27. Dobrev D, Neumann R, Angert N, Vetter J, Preparation of metal membranes by direct electroplating of ion-track filters. Proc of the Workshop on European Network on Ion Track Technology, Caen, France, 24–26 Feb. 2002

    Google Scholar 

  28. Martin CR, Nanomaterials: a membrane-based synthetic approach. Science 266, 1961–1966 (1994)

    Article  CAS  Google Scholar 

  29. Cepak VM, Hulteen JC, Che G, Jirage KB, Lakshmi BB, Fisher ER, Martin CR, Chemical strategies for template syntheses of composite in micro-and nanostructures. Chem Mater 9, 1065–1067 (1997)

    Article  CAS  Google Scholar 

  30. Cepak VM. Chem Mater 8, 2109 (1996)

    Article  Google Scholar 

  31. Martin CR, Template synthesis of polymeric and metal microtubules. Adv Mater 3, 457–459 (1991)

    Article  CAS  Google Scholar 

  32. Parthasarathy RV, Phani KLN, Martin CR, Template synthesis of graphitic nanotubules. Adv Mater 7, 896–897 (1995)

    Article  CAS  Google Scholar 

  33. Henglein A, Electronics of colloidal nanometer particles. Ber Bunsenges Phys Chem 99, 903–913 (1995)

    CAS  Google Scholar 

  34. Satoh N, Hasegawa H, Tsujii K, Kimura K, Photoinduced coagulation of Au nanocolloides. J Phys Chem 98, 2143–2147 (1994)

    Article  CAS  Google Scholar 

  35. Kuroda K, Shimojima A, Formation of ordered silica-organic hybrids by self-assembly of hydrolyzed organoalkoxysilanes with long organic chains. Proc MRS Boston 27.11.-1.12. 2001, Contribution V2. 8

    Google Scholar 

  36. Lincot D, Froment M, Cachet H, Chemical deposition of chalcogenide thin films from solution. Adv. Electrochem Sci Eng 6 167–235 (1999), and references therein

    Google Scholar 

  37. Martin CR, Nishizawa M, Jirage K, Kang M, Lee SB, Controlling transport selectivity in gold nanotubule membranes. Adv Mater 13, 1351–1362 (2001)

    Article  CAS  Google Scholar 

  38. AMI DODOCO GmbH, and Co., Geschäftsfeld Oberflächentechnik, Im Altgefäll 12, 75181 Pforzheim, Technical Information sheets, 2001

    Google Scholar 

  39. Inberg A, Shacham-Diamand Y, Rabinovich E, Golan G, Croitoru N, Electroless-deposited Ag-W films for microelectronics applications. Thin Solid Films 389, 213–218 (2001)

    Article  CAS  Google Scholar 

  40. Cai Z, Martin CR, Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J Am Chem Soc 111, 4138–4139 (1989)

    Article  CAS  Google Scholar 

  41. Vaughn GD, Selective metallization of optically varible devices. In: Mittal KL (ed.): Metallized Plastics, Marcel Dekker Inc., New York, 1998, pp. 71–77

    Google Scholar 

  42. Haga Y, An H, Sato Y, Yosomiya R, Yosomiya T, Magnetic properties of metal layer generated by reduction of polymer containing metal ion. In: Mittal KL (ed.): Metallized plastics. Marcel Dekker Inc., New York, 1998, pp. 85–93

    Google Scholar 

  43. Brumlik CJ, Menon VP, Martin CR, Template synthesis of microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques, J Mater Res 9, 1174–1182 (1994)

    Article  CAS  Google Scholar 

  44. Jirage KB, Hulteen JC, Martin CR, Effect of thiol chemisorption on the transport properties of gold nanotubule menbranes. Anal Chem 71, 4913–4918 (1999)

    Article  CAS  Google Scholar 

  45. Brumlik CJ, Martin CR, Template synthesis of metal microtubes. J Am Chem Soc 113, 3174–3175 (1991)

    Article  CAS  Google Scholar 

  46. Hwang SD, Kher S, Spencer JT, Datta S, Dowben PA, Laser-induced selective copper deposition on polyimides and semiconductors from solution. In: Mittal KL (ed.): Metallized Plastics. Marcel Dekker Inc., New York, 1998, pp. 9–13

    Google Scholar 

  47. Ogawa Y, Tokunaga H, Murahra M, Photochemical nucleation of copper on polyimide surface with 10 ns laser irradiation. Proc MRS Boston 27.11.1.12. 2001, Contribution S5. 8

    Google Scholar 

  48. Gheorgiu M, Popa G, Pascu M, Vasile C, Chemical and physical surface modifications of polymers by ion beam treatments. In: Mittal KL (ed.): Metallized Plastics. Marcel Dekker Inc., New York, 1998, pp. 269–279

    Google Scholar 

  49. Ibidunni AO, Brunner RJ, Metal/polymer adhesion: Effect of ion bombardment on polymer interfacial reactivity. In: Mittal KL (ed.): Metallized Plastics. Marcel Dekker Inc., New York, 1998, pp. 281–289

    Google Scholar 

  50. Liu K, Nagodawithana N, Searson PC, Chien CL, Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires. Phys Rev B51, 7381–7384 (1995)

    Article  CAS  Google Scholar 

  51. Chakarvati SK, Vetter J, Template synthesis — a membrane-based technology for generation of nano/micro materials: a review. Rad Meas 29, 149–159 (1989)

    Article  Google Scholar 

  52. Biswas A, Awasthi DK, Singh BK, Lotha S, Singh JP, Fink D, Yadav BK, Bhattacharya B, Bose SK, Resonant electron tunneling in single quantum well heterostructure junction of electrodeposited metal semiconductor nanostructures using nuclear track filters. Nucl Instrum Methods B151, 84–88 (1999)

    Article  CAS  Google Scholar 

  53. Klein JD, Herrick RD II., Palmer D, Sailor MJ, Brumlik CJ, Martin CR, Electrochemical fabrication of cadmium chalcogenide microdiode arrays. Chem Mater 5, 902–904 (1993)

    Article  CAS  Google Scholar 

  54. Brumlik CJ, Menon VP, Martin CR, Template synthesis of microtubule ensembles utilizing chemical, electrochemical, and vacuum deposition techniques. J Mater Res 9, 1174–1182 (1994)

    Article  CAS  Google Scholar 

  55. Maaroof A, Evans BL, Onset of electrical conduction in Pt and Ni films J Appl Phys 76, 1047–1054 (1994)

    CAS  Google Scholar 

  56. Herman DS, Rhodin TN, Electrical conduction between metallic micropartides. J Appl Phys 87, 594 (1996)

    Google Scholar 

  57. Klett R, Klose HA, Morawetz K, Müller-Jahreis U, Noack R-A, Thiele P, Optical and electrical in-situ characterization of electron-beam and ion-beam deposited PtSi-nanolayers. Personal communication; to be published (2003)

    Google Scholar 

  58. Masden JT, Giordano N, Finite-size effects in the electrical conduction of thin wires. Phys Rev B36, 4197–4202 (1987)

    Article  CAS  Google Scholar 

  59. Neumann R, Ion induced modifications in solids: basic aspects and applications in nanoscience. 21st Int. Conf. on Nuclear Tracks in Solids, New Delhi, 21–25 Oct. 2002

    Google Scholar 

  60. Burford RP, Tongtam T, Conducting polymer with controlled fibrillar morphology. J Mater Sci 26 3264–3270 (1991), and references therein

    Google Scholar 

  61. van Dyke LS, Martin CR, Fibrillar electronically conductive polymers show enhanced rates of charge transport. Synth Met 36, 275–281 (1990)

    Article  Google Scholar 

  62. Pfohl T, Kim JH, Yasa M, Miller HP, Wong GCL, Bringezu F, Wen Z, Wilson L, Kim MW, Li Y, Safinya CR, Controlled modification of microstructures silicon surfaces for confinement of biological macromolecules and liquid crystals, Langmuir 17, 5343–5351 (2001);

    Article  CAS  Google Scholar 

  63. Li Y, Pfohl T, Kim JH, Yasa M, Wen Z, Kim MW, Safina CR, Selective surface modification in silicon microfluidic channels for micromanipulation of biological macromolecules. Biomedical Microdevices 3, 239–244 (2001)

    Google Scholar 

  64. Heiss M, Fischer B, Cholewa M, The ion-microprobe at GSI and its applications. Proc European network on ion track technology, Caen, 24–26.2. 2002; and: Cholewa M, Fischer BE, Heiss M, (2002) Preparatory experiments for a second-generation radiation-biological single hit facility. Presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25, 2002, Giordano Naxos, Italy

    Google Scholar 

  65. Wang N, Tang ZK, Mono-sized and single-walled 4–Angstom Carbon nanotube arrays. Proc MRS Boston 27.11.-1.12. 2001, Contribution V12. 8;

    CAS  Google Scholar 

  66. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114, 10834–10854 (1992)

    Google Scholar 

  67. Pool R, Physicists tackle theory, tubes, and temperature. Science 247, 14101412 (1990)

    Google Scholar 

  68. Douglas K, Devaud G, Clark NA, Transfer of biologically derived nanometerscale patterns to smooth substrates. Science 257, 642–644 (1992)

    Article  CAS  Google Scholar 

  69. Clark TD, Ghadiri MR, Supramolecular design by covalent capture. Design of a peptide cylinder via hydrogen-bond-promoted intermolecular olefin metathesis. J Am Chem Soc 117, 12364–12369 (1995)

    Article  CAS  Google Scholar 

  70. Ozin GA, Nanochemistry: synthesis in diminishing dimensions. Adv Mater 4, 612–649 (1992);

    Article  CAS  Google Scholar 

  71. Schöllhorn R, Intercalation systems as nanostructures functional materials. Chem Mater 8, 1747–1757 (1996)

    Google Scholar 

  72. Tokarev A, Sidorenko A, Minko S, Stamm M, Organized array of metallic nano-clusters via self-organization of block-copolymers. Intl. Workshop on Nano-structures for Electronics and Optics, ID:41, August 18–21, 2002, Dresden

    Google Scholar 

  73. Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Gösele U, Fischer SF, Kronmüller H, Schweinböck TH, Weiss D, High-density hexagonal nickel nanowire arrays with 65 and 100 nm-period. Proc MRS Boston 27.11.1.12. 2001, Contribution Y9. 3;

    Google Scholar 

  74. and: Nielsch K, Hertel R, Wehrspohn RB, Barthel J, Kirschner J, Gösele U, Fischer SF, Kronmüller H, Schweinböck TH, Weiss D, Switching behavior of single nanowires inside dense nickel nanowire arrays. Proc IEEE International Magnetics Conference, Piscataway, NJ, USA, IEEE 2002, p.GB2 of vii and 513

    Google Scholar 

  75. Gösele U, Nielsch K, Reiche M, Müller F, Wehrsporn R, Choi J, Two-dimensional ordered nanopore arrays, Proc Intl. Workshop on nanostructures for electronics and optics, Dresden, Aug. 18–21, 2002, contribution # 40

    Google Scholar 

  76. Tonucci RJ, Justus BL, Campillo AJ, Ford CE, Nanochannel array glass. Science 258, 783–785 (1992)

    Article  CAS  Google Scholar 

  77. Grün M, Unger KK, Matsumoto A, Tsutsumi K, Ordered microporous MCM-41 adsorbents: novel routes in synthesis, product characterization and specification. Royal Society of Chemistry. Characterization of Porous Solids IV, pp. 81–89 (1997)

    Google Scholar 

  78. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GK, Chmelka BF, Stucky GD, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279, 548–552 (1998)

    Article  CAS  Google Scholar 

  79. Rückes Th, Kim K, Joselevich E, Tseng GY, Cheung C-L, Lieber CM, Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289, 94–97 (2000)

    Article  Google Scholar 

  80. Kyotani T, Tsai LF, Tomita A, Preparation of ultrafine carbon tubes in nanochannels of an anodic aluminium oxide film. Chem Mater 8, 2109–2113 (1996)

    Article  CAS  Google Scholar 

  81. Herminghaus S, Mikroskopische Wasserkanäle für die Nanotechnologie. Presse-Information PRI C1/99(5), Wirsing B, Frese W, Hintsches E, Trepte A (eds.), Max-Planck-Gesellschaft, München, 1999 (in German)

    Google Scholar 

  82. Ternashi T, Sugawara A, Shimizu T, Miyake M, Planar arrays of 1D gold nanoparticles on ridge-and-valley structured carbon. J Am Chem Soc 124, 4210–4211 (2002)

    Article  Google Scholar 

  83. Fahrner WR, Hilleringmann V, Horstmann J, Job R, Neitzert HC, Scheer H, Ulyashin A, Wieck A, Nanoprozessierung and Nanoelektronik, Fahrner WR (ed.), Fernuniversität Hagen, Germany, 2001, and many references therein (in German)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fink, D. (2004). Ion-Track Manipulations. In: Transport Processes in Ion-Irradiated Polymers. Springer Series in Materials Science, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10608-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10608-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05894-3

  • Online ISBN: 978-3-662-10608-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics