Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 65))

Abstract

Chemical etching of the ion-irradiated polymers is a process that transforms every latent track into a hole that, depending on conditions, may have a wide variety of shapes — long cylinders, short cones, hemispheres — and many others. All uses of ion-track etching are aimed either at getting information on the particles that created the tracks or at modifying the structure of the pristine monolithic polymer. In the former case the polymer serves as a detector and, sometimes, as a spectrometer. From the number, shapes and sizes of the tracks, one can determine the particle fluence, the composition of the particle flux, the angle of incidence and the energy of the particles. In other words, etching develops “fingerprints” of the particles passed through the polymer. Numerous applications of polymeric track detectors in nuclear physics, radiography, cosmic-ray studies, applied radiochemistry, dosimetry, etc., are based on this principle. In the latter case a particle beam with known parameters in combination with chemical etching serves as a unique and powerful microtool for the creation of a micro- or nanoporous structure. These two branches of track-etch methodology have been presented in books by Fleischer et al. [1] and by Spohr [2] that were comprehensive at their time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleischer RL, Price PB, Walker RM, Nuclear Tracks in Solids: Principles and Applications. University of California, Berkeley, 1975

    Google Scholar 

  2. Spohr R, Ion Tracks and Microtechnology. Principles and Applications. Vieweg Verlag, Braunschweig, 1990

    Google Scholar 

  3. Moiseev YuV, Zaikov GE, Chemical Stability of Polymers in Aggressive Media (in Russian). Khimia, Moscow, 1979

    Google Scholar 

  4. Schnell H, Chemistry and Physics of Polycarbonate. Interscience Publishers, New York, 1964

    Google Scholar 

  5. Born M, Volumen and Hydrationswärme der Ionen. Z Phys 1, 45–48 (1920)

    Article  CAS  Google Scholar 

  6. Markin VS, Chismadzhev YuA, Induced Ionic Transport (in Russian). Nauka, Moscow, 1974

    Google Scholar 

  7. Samoilova LI, Apel PYu, Etching of small pores in PETP by different alkalis Radiat Meas 25, 717–720 (1995)

    CAS  Google Scholar 

  8. Parsegian A, Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221, 844–846 (1969)

    Article  CAS  Google Scholar 

  9. Schulz A, Danziger M, Akapiev GN, Trofimov VV, Prokert K, The pore opening process of etching PETP films irradiated by multiply heavy ions and the three-phase-model of the etching process of the single ion track. In: Yu.Ts. Oganessian and R. Kalpakchieva (eds.), Heavy Ion Physics, World Scientific, Singapore, 1998, pp. 792–795

    Google Scholar 

  10. Fink D, Müller M, Capillaric penetration of etchant solution into swift heavy ion irradiated silicone rubber. Nucl Instrum Methods B170, 134–144 (2000)

    Google Scholar 

  11. Fink D, Müller M, Petrov A, Etching kinetics of swift heavy ion irradiated polymers with insoluble additives or reaction products. Presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25,2002, Giardini Naxos, Italy

    Google Scholar 

  12. Fink D, Dwivedi KK, Müller M, Ghosh S, Hnatowicz V, Vacik J, Cervena J, On the penetration of etchant into tracks in polycarbonate. Rad Meas 32, 307–313 (2000)

    Article  CAS  Google Scholar 

  13. Fink D, Ghosh S, Klett R, Dwivedi KK, Kobayashi Y, Hirata K, Vacik J, Hnatowicz V, Cervena J, Chadderton LT, Transport processes during the incubation time of ion track etching in polymers. Nucl Instrum Methods B146, 486–490 (1998)

    Google Scholar 

  14. Fink D, Petrov A, Müller M, Hnatowicz V, Vacik J, Cervena J, Marker penetration into high energy ion irradiated polymers. Surf Coat Technol 158–159, 228–233 (2002)

    Article  Google Scholar 

  15. Ghosh S, Klett R, Fink D, Dwivedi KK, Vacik JJ, Hnatowicz V, Cervena J, On the penetration of aqueous solutions into some pristine and heavy-ion irradiated polymers. Radiat Phys Chem 55, 271–284 (1999)

    Article  CAS  Google Scholar 

  16. Fink D, Asmus T, Müller M, Apel PYu, Chadderton LT, Ion tracks in Mylar. Paper in preparation; to be published (2005)

    Google Scholar 

  17. Baur D, Apel PYu, Korchev YE, Müller C, Siwy Z, Spohr H, Spohr R, Surface gel in ion track etching — observations and consequences. Proc of the workshop on European Network on Ion Track Technology, Caen, France, 24–26 Feb. 2002

    Google Scholar 

  18. Shen M, Bever MB, Gradients in polymeric materials. J Mater Sci 7, 741–746 (1972)

    Article  CAS  Google Scholar 

  19. Fleischer RL, Price PB. Tracks of charged particles in high polymers. Science 140, 1221–1222 (1963)

    Article  CAS  Google Scholar 

  20. Fink D, Petrov A, Stolterfoht N, Wilhelm M, Richter A, Behar M, Farenzena L, Papaleo R, Hirata K, Kobayashi Y, Chadderton LT, Schulz A, Fahrner WR, Creation of nano-scale objects by swift heavy ion track manipulations. Proc. 2nd Int. Symp. On Material Chemistry in Nuclear environment, Tsukuba, March 13–15, 2002

    Google Scholar 

  21. Edmonds EA, Durrani SA, Relationships between thermoluminescence, radiation-induced electron spin resonance and track etchability of lexan poly-carbonate. Nucl Tracks 3, 3–11(1979)

    Google Scholar 

  22. Koul SL, Campbell ID, Chadderton LT, Langroo M, Fink D, Biersack JP, ESR and track-etch studies of irradiated polymers. Nucl Instrum Methods B32, 383–388 (1988)

    CAS  Google Scholar 

  23. Lück HB, Mechanism of particle track etching in polymeric nuclear track detectors. Nucl Instrum Methods 202, 497–501 (1982)

    Article  Google Scholar 

  24. Bernas A, Chambaudet A, Sur les dégâts chimiques créés par des faisceaux d’électrons ou d’ions lourds dans différents plastiques détecteurs de traces. Rad Effects 22, 129–134 (1974) (in French)

    Article  CAS  Google Scholar 

  25. Boyett RH, Johnson DR, Becker K, Some studies on the chemical damage mechanism along charged-particle tracks in polymers. Radiat Res 42, 1–12 (1970)

    Article  CAS  Google Scholar 

  26. Picq V, Ramillon JM, Balanzat E, Swift heavy ions on polymers: Hydrocarbon gas release. Nucl Instrum Methods B146, 496–503 (1998)

    Google Scholar 

  27. Benton EV, Henke RP, Sensitivity enhancement of Lexan nuclear track detector. Nucl Instr Methods 70, 183–184 (1969)

    Article  Google Scholar 

  28. Tretyakova SP, Apel PYu, Jolos LV, Mamonova TI, Shirkova VV, Study of registration properties of polyethyleneterephthalate. In: Francois H et al. (eds.), Solid State Nuclear Track Detectors. Pergamon Press, Oxford, 1980, pp. 283–287

    Google Scholar 

  29. Chambaudet A, Roncin JIR, UV and ESR studies on plastic track detectors irradiated by heavy ions. In: Fowler PH, Clapham VM (eds.), Solid State Nuclear Track Detectors. Pergamon Press, Oxford, pp. 15–21 (1982)

    Google Scholar 

  30. Balanzat E, Betz N, Bouffard S, Swift heavy ion modification of polymers. Nucl Instrum Methods B105, 46–54 (1995)

    Google Scholar 

  31. Steckenreiter T, Balanzat E, Fuess H, Trautmann C, Chemical modifications of PET induced by swift heavy ions. Nucl Instrum Methods B131, 159–166 (1997)

    Google Scholar 

  32. Popov AA, Rapoport NYa, Zaikov GE, Oxidation of Oriented and Strained Polymers, Khimia, Moscow, 1987 (in Russian)

    Google Scholar 

  33. Cartwright BG, Shirk EK, Price PB, A nuclear-track-recording polymer of unique sensitivity and resolution. Nucl Instrum Methods 153, 457–460 (1978)

    Article  CAS  Google Scholar 

  34. Fischer BE, Spohr R, Production and use of nuclear tracks: Imprinting structure on solids. Rev Mod Phys 55, 907–948 (1983)

    Article  CAS  Google Scholar 

  35. Rybnikar F, Selective etching of polyolefines. I. Isotactic polypropylene. J Appl Polym Sci 30, 1949–1961 (1985)

    Article  CAS  Google Scholar 

  36. Enge W, Grabish K, Beaujean R, Bartholomä KP, Etching behavior of a cellulose nitrate plastic detector under various etching conditions. Nucl Instrum Methods 115, 263–270 (1974)

    Article  CAS  Google Scholar 

  37. Enge W, Grabish K, Dallmeyer L, Bartholomä KP, Beaujean R, Etching behavior of the Lexan polycarbonate plastic detector. Nucl Instrum Methods 127, 125–135 (1975)

    Article  CAS  Google Scholar 

  38. Gruhn TA, Li WK, Benton EV, Cassou RM, Johnson CS, Etching mechanism and behaviour of polycarbonates in hydroxide solution: Lexan and CR-39. In: Francois H et al. (eds.), Solid State Nuclear Track Detectors. Pergamon Press, Oxford, 1980, pp. 291–301

    Google Scholar 

  39. Lück HB, On the use of polyethyleneterephthalate as solid state nuclear track detector: mechanism and kinetics of bulk etching. Nucl Instrum Methods 200, 517–523 (1982)

    Article  Google Scholar 

  40. Lück HB, On the use of polyethyleneterephthalate as solid state nuclear track detector: Mechanism and kinetics of bulk etching. Nucl Instrum Methods 213, 507–511 (1983)

    Article  Google Scholar 

  41. Somogyi G, Varnagy M, Medveczky L, The influence of etching parameters on the sensitivity of plastics. Radiat Effects 5, 111–116 (1970)

    Article  CAS  Google Scholar 

  42. Salkauskas M, Stulgiene S, Peculiarities of etching of polyethylene with Cr(VI) solutions in sulfuric acid. Lietuvos TSR Mosklu akademijos darbai (B serija) 2 (87), 3–8 (1975) (in Russian)

    Google Scholar 

  43. Stone FGA, Graham WAG, Inorganic Polymers. Academic Press, New York and London, 1992

    Google Scholar 

  44. Petersen DD, Improvement in particle track etching in Lexan polycarbonate film. Rev Sci Instrum 41, 1252–1253 (1970)

    Article  Google Scholar 

  45. Apel PYu, Blonskaya IV, Orelovitch OL, Root D, Vutsadakis V, Dmitriev SN, Effect of nanosized surfactant molecules on the etching of ion tracks: new degrees of freedom in design of pore shapes. Presented at the 5th Intl. Symposium on “Swift Heavy Ions in Matter”, May 22–25, 2002, Giardini Naxos, Italy

    Google Scholar 

  46. Apel PYu, Titova S, Tretyakova S, A study of etching of heavy charged particles in polyarylate. JINR Commun 18–86–788 (1986) JINR, Dubna

    Google Scholar 

  47. Daubresse C, Ferain E, Legras R, Energetic heavy ion tracks in PEEK film. Nucl Instrum Methods B122, 89–92 (1997)

    Google Scholar 

  48. Komaki Y, Tsujimura S, Growth of fine holes in polyethylenenaphthalate film irradiated by fission fragments. J Appl Phys 47, 1355–1358 (1976)

    Article  CAS  Google Scholar 

  49. Komaki Y, Matsumoto Y, Ishikawa N, Sakurai T, Heavy ion track microfilter of polyimide film Polym Commun 30, 43–44 (1989)

    CAS  Google Scholar 

  50. Vater P, Production and application of nuclear track microfilters. Nucl Tracks Radiat Meas 15, 743–749 (1988)

    Article  CAS  Google Scholar 

  51. Vilensky AI, Oleinikov VA, Markov NG, Mchedlishvili BV, Dontsova EP, Polyimide track membranes for ultra and microfiltration (in Russian). Russian Polymer Sci A36, 475–485 (1994)

    Google Scholar 

  52. Kravets LI, Dmitriev SN, Apel PYu, Production and properties of polypropylene track membranes. Collect Czech Chem Commun 62, 752–760 (1997)

    Article  CAS  Google Scholar 

  53. Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsadakis V, Tracks of very heavy ions in polymers. Nucl Instrum Methods B131, 55–63 (1997)

    Google Scholar 

  54. Komaki Y, Growth of fine holes by the chemical etching of fission tracks in polyvinylidene fluoride. Nucl Tracks 3, 33–44 (1979)

    Article  CAS  Google Scholar 

  55. Daubresse C, Sergent-Engelen T, Ferain E, Schneider YJ, Legras R, Characterization of energetic heavy ion track in PVDF: production of PVDF track-etched membrane and application. Nucl Instrum Methods 105, 126–129 (1995)

    Article  CAS  Google Scholar 

  56. Komaki Y, Seguchi T, Scanning electron microscopy of nuclear pore filters in poly(ethylene terephthalate) and ethylene-tetrafluoroethylene copolymer. Polymer 23, 1143–1146 (1982)

    Article  CAS  Google Scholar 

  57. Shirkova VV, Tretyakova SP, Physical and chemical basis for the manufacturing of fluoropolymer track membranes. Radiat Meas 28, 791–798 (1997)

    Article  CAS  Google Scholar 

  58. Monnin M, Besson H, Sanzelle S, Avan L, Nouveax detecteurs solides de traces nucleaire et nouvelles methods de developpement chimique des detecteurs deja connus. Compt Rendus 264B, 1751–1752 (1967) (in French)

    Google Scholar 

  59. Katz R, Kobetich EJ, Formation of etchable tracks in dielectrics. Phys Rev 170, 401–405 (1968)

    Article  CAS  Google Scholar 

  60. Benton EV, On latent track formation in organic nuclear charged particle track detectors. Radiat Eff 2, 273–280 (1970)

    Article  CAS  Google Scholar 

  61. Monnin M, Mecanisme de la formation des traces dans les polymeres. Radiat Eff 5, 69–73 (1970) (in French)

    Article  CAS  Google Scholar 

  62. Fleischer RL, Price PB, Walker RM, Hubbard EL, Criterion for registration in dielectric track detectors. Phys Rev 156, 353–355 (1967)

    Article  CAS  Google Scholar 

  63. Lück HB, A plastic track detector with high sensitivity. Nucl Instrum Methods 114, 139–140 (1974)

    Article  Google Scholar 

  64. Somogyi G, Grabish K, Scherzer R, Enge W, Revision of the concept of registration threshold in plastic track detectors. Nucl Instrum Methods 134, 129141 (1976)

    Google Scholar 

  65. Trautmann C, Bouffard S, Spohr R, Etching threshold for ion tracks in polyimide. Nucl Instrum Methods B116, 429–433 (1996)

    Google Scholar 

  66. O’Sullivan D, Price PB, Kinoshita K, Wilson CG, Correlative studies of track-etch behaviour and chemical development of lithographic polymer resists. In: Fowler PH, Clapham VM (eds.), Solid State Nuclear Track Detectors. Perga-mon Press, Oxford, 1982, pp. 81–84

    Google Scholar 

  67. Ogura K, Hattori T, Hirata M, Asano M, Yoshida M, Tamada M, Omichi H, Nagaoka N, Kubota H, Katakai R, Development of copolymer of CR-39 with high sensitivity to low LET particles. Radiat Meas 25, 159–162 (1995)

    Article  CAS  Google Scholar 

  68. Benton EV, Ogura K, Frank AL, Atallah T, Rowe V, Response of different types of CR-39 to energetic ions. Nucl Tracks Radiat Meas 12, 79–82 (1986)

    Article  CAS  Google Scholar 

  69. Apel PYu, Didyk AYu, Salina AG, Physico-chemical modification of poly-olefins irradiated by swift heavy ions. Nucl Instrum Methods B107, 276–280 (1996)

    Google Scholar 

  70. Chambaudet A, Romary P, On the variation of some heavy ion track characteristics with the polymeric detector crystallinity. In: Granzer F, Paretzke H, Schopper E (eds,), Solid State Nuclear Track Detectors. Pergamon Press, Oxford, 1978, pp. 307–316

    Google Scholar 

  71. Green PF, Ramli AG, Al-Najjar SAR, Abu-Jarad F, Durrani SA, A study of bulk-etch rates and track-etch rates in CR-39. Nucl Instrum Methods 203, 551–559 (1982)

    Article  CAS  Google Scholar 

  72. Benton EV, A study of charged particle tracks in cellulose nitrate. USNDRLTR-68–14, San Francisco, California (1968)

    Google Scholar 

  73. Petersen F, Enge W, Energy loss dependent transversal etching rates of heavy ion tracks in plastic. Radiat Meas 25, 43–46 (1995)

    Article  CAS  Google Scholar 

  74. DeSorbo W, Ultraviolet effects and aging effects on etching characteristics of fission tracks in polycarbonate film. Nucl Tracks 3, 13–32 (1979)

    Article  Google Scholar 

  75. Schlenk B, Somogyi G, Valek A, A study on the etching properties of electron-irradiated plastic track detectors. Radiat Eff 24, 247–253 (1975)

    Article  CAS  Google Scholar 

  76. Endo K, Doke T, Calibration of plastic nuclear track detectors for identification of heavy charged nuclei using fission fragments. Nucl Instrum Methods 111, 29–37 (1973)

    Article  CAS  Google Scholar 

  77. Tripier J, Remy G, Debeauvais M, Ralarosy J, Stein R, Determination des vitesses de developpement des traces d’ions lourds dans le Makrofol et application. In: Nicolae M (ed.), Proc 8th Int Conf on Nuclear Photography and Solid State Track Detectors. Institute of Atomic Physics, Bucharest, 1972, pp. 290–297 (in French)

    Google Scholar 

  78. Chadderton LT, Fink D, Gamaly Y, Moeckel H, Wang L, Omichi H, Hosoi F, Synthesis of buckminsterfullerene in the wake of energetic ions. Nucl Instrum Methods B91, 71–77 (1994)

    Google Scholar 

  79. Apel PYu, Korchev YuE, Siwy Z, Spohr R, Yoshida M, Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Methods B184, 337–346 (2001)

    Google Scholar 

  80. Vacïk J, Cervena J, Hnatowicz Posta S, Fink D, Klett R, Strauß P, Simple technique for characterization of ion-modified polymeric foils. Surf Coat Technol 123, 97–100 (2000)

    Article  Google Scholar 

  81. Komaki Y, Ohtsu H, The effect of coexistent gases during fission fragment irradiation on track etching in polyvinylidene fluoride film Nucl Tracks 11, 151–156 (1986)

    CAS  Google Scholar 

  82. O’Sullivan D, Thompson A, The observation of a sensitivity dependence on temperature during registration in solid state nuclear track detectors. Nucl Tracks 4, 271–276 (1980)

    Article  Google Scholar 

  83. Karamdoust NA, Durrani SA, Effect of registration temperature on the response of CR-39 to alpha particles and fission fragments. Nucl Track Radiat Meas 19, 179–184 (1991)

    Article  CAS  Google Scholar 

  84. Apel PYu, Didyk AYu, Fursov BI, Kravets LI, Nesterov VG, Samoilova LI, Zhdanov GS, Registration temperature effect in polymers: Physico-chemical aspects. Radiat Meas 28, 19–24 (1997)

    Article  CAS  Google Scholar 

  85. Crawford WT, DeSorbo W, Humphrey JS, Enhancement of track etching rates in charged particle-irradiated plastics by a photo-oxidation effect. Nature 220, 1313–1314 (1968)

    Article  CAS  Google Scholar 

  86. Kuznetsov VI, Didyk AYu, Apel PYu, Production and investigation of nuclear track membranes at JINR. Nucl Track Rad Meas 19, 919–924 (1991)

    Article  CAS  Google Scholar 

  87. Henke RP, Benton EV, Heckman HH, Sensitivity enhancement of plastic nuclear track detectors. Radiat Effects 3, 43–49 (1970)

    Article  CAS  Google Scholar 

  88. Tretyakova SP, Mamonova TI, Influence of gamma-irradiation on detection properties of Laysan film Atomic Energy 47, 261–262 (1979) (in Russian)

    CAS  Google Scholar 

  89. Komaki Y, Ishikawa N, Sakurai T, Effects of gamma rays on etching of heavy ion tracks in polyimide. Radiat Meas 24, 193–196 (1995)

    Article  CAS  Google Scholar 

  90. Mishra R, Electron induced modifications in some polymers. PhD. Thesis, North-Eastern Hill University, Shillong, India, 2001

    Google Scholar 

  91. Dwivedi K, Ghosh S, Fink D, Mishra R, Tripathy S, Kulshreshtha A, Kathing DT, Modification in track registration response of PADC detector by energetic protons. Rad Meas 31, 127–132 (1999)

    Article  CAS  Google Scholar 

  92. Lück HB, Solvent-induced sensitization of particle tracks in polyester. Nucl Tracks Radiat Meas 19, 189–195 (1991)

    Article  Google Scholar 

  93. Törber G, Enge W, Beaujean R, Siegmon G, The diffusion-etch model. Part I: Proposal of a new two-phase track-developing model. In: Fowler PH, Clapham VM (eds.), Solid State Nuclear Track Detectors. Pergamon Press, Oxford, 1982, pp. 307–310

    Google Scholar 

  94. Todorovie Z, Antanasijevic R, A new method for identification of low energy fragments with 8 Z 18 in plastic track detector Makrofol. Nucl Instrum Methods 212, 217–219 (1983)

    Google Scholar 

  95. Fujii M, Yokota R, Kobayashi T, Hasegawa H, Sensitization of polymeric track detectors with carbon dioxide. Radiat Meas 25, 141–144 (1995)

    Article  CAS  Google Scholar 

  96. Csige I, Post-irradiation sensitization of CR-39 track detector in carbon dioxide atmosphere. Radiat Meas 28, 171–176 (1997)

    Article  CAS  Google Scholar 

  97. Sokolova YuD, Machula AA, Milinchuk VK, Zhdanov GS, On the structure of latent tracks in polymers irradiated with heavy ions (in Russian). Colloid J 59, 395–397 (1997)

    Google Scholar 

  98. Somogyi G, Development of etched nuclear tracks. Nucl Instrum Methods 173, 21–42 (1980)

    Article  CAS  Google Scholar 

  99. Somogyi G, Szalay SA, Track-diameters kinetics in dielectric track detectors. Nucl Instrum Methods 109, 211–232 (1973)

    Article  CAS  Google Scholar 

  100. Enge W, Introduction to plastic nuclear track detectors. Nucl Tracks 4, 283308 (1980)

    Google Scholar 

  101. Fromm M, Meyer P, Chambaudet A, Ion track etching in isotropic polymers: etched track shape and detection efficiency. Nucl Instrum Methods B107, 337–343 (1996)

    Google Scholar 

  102. Martin CR, Nishizawa M, Jirage K, Kang M, Lee SB, Controlling transport selectivity in gold nanotubule membranes, Adv Mater 13, 1351–1362 (2001)

    Article  CAS  Google Scholar 

  103. Bean CP, Doyle MV, Entine G, Etching of submicron pores in irradiated mica. J Appl Phys 41, 1454–1459 (1970)

    Article  CAS  Google Scholar 

  104. Guillot G, Rondelez F, Characteristics of submicron pores obtained by chemical etching of nuclear tracks in polycarbonate films J Appl Phys 52, 71557164 (1981)

    Google Scholar 

  105. Schnoor G, Schutt H, Beaujean R, Enge W, Electrolytical studies of submicroscopic nuclear tracks in plastic detectors. In: Fowler PH, Clapham VM (eds.), Solid State Nuclear Track Detectors. Pergamon Press, Oxford, 1982, pp. 51–54

    Google Scholar 

  106. Apel PYu, Conductometric studies of multiply charged ion track structure in various polymers. Nucl Tracks Radiat Meas 19, 29–34 (1991)

    Article  CAS  Google Scholar 

  107. Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsadakis V, Track size and track structure in polymer irradiated by heavy ions. Nucl Instrum Methods B146, 468–474 (1998)

    Google Scholar 

  108. Mazzei R, Bernaola O, Molinari de Ray B, Cabrini R, Replica method for avaluation of submicroscopic nuclear tracks in solid state track detectors. Nucl Tracks 9, 219–223 (1984)

    CAS  Google Scholar 

  109. Mazzei R, Bernaola OA, Saint Martin G, Molinari de Ray B, Submicroscopic kinetics of track formation in SSNTD. Nucl Instrum Methods B9, 163–168 (1985)

    CAS  Google Scholar 

  110. Mazzei R, Grasso JC, Bernaola OA, Bourdin JC, Saint Martin G, The submicroscopic track kinetic theory and the variational principle. Nucl Instrum Methods B34, 74–80 (1988)

    CAS  Google Scholar 

  111. Mazzei R, Bernaola OA, Track experimental data related to post-irradiation dynamic processes. Nucl Instrum Methods B63, 309–318 (1992)

    CAS  Google Scholar 

  112. Apel PYu, Dmitriev SN, Root D, Vutsadakis V, A novel approach to particle track etching: Surfactant-enhanced control of pore morphology. Part Nuclei Lett 4 [101]-2000, 69–74 (2000)

    Google Scholar 

  113. Apel PYu, Blonskaya IV, Didyk AY, Dmitriev SN, Orelovitch OL, Root D, Samoilova LI, Vutsadakis V, Surfactant-enhanced control of track-etch pore morphology. Nucl Instrum Methods B179, 55–62 (2001)

    Google Scholar 

  114. Vacík J, Cervena J, Hnatowicz V, Fink D, Kobayashi Y, Hirata K, Apel PYu, Strauß P, Study of latent and etched tracks by charged particle transmission technique. Presented at the RADECS Conf. Sept. 1998, Besancon, France

    Google Scholar 

  115. Fink D, Alegaonkar PS, Petrov AV, Berdinsky AS, Rao V, Müller M, Dwivedi KK, Chadderton LT, The emergence of new track applications. Proc. of the 21St Intl. Conf. on Nuclear Tracks in Solids, Oct 21–25, 2002, New Delhi, India

    Google Scholar 

  116. Tommasino L, Armellini C, Etching technique for damage track detectors. Radiat Eff 20, 253–256 (1973)

    Article  CAS  Google Scholar 

  117. Somogyi G, A study of the basic properties of electrochemical track etching. Radiat Eff 34, 51–56 (1977)

    Article  CAS  Google Scholar 

  118. Dissado LA, Fothergill JC, Electrical degradation and breakdown in polymers. Peter Peregrinus Ltd., London, 1992

    Book  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Apel, P.Y., Fink, D. (2004). Ion-Track Etching. In: Transport Processes in Ion-Irradiated Polymers. Springer Series in Materials Science, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10608-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10608-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05894-3

  • Online ISBN: 978-3-662-10608-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics