Advertisement

Immunmodulatorische Wirkung von Bluttransfusionen

Zusammenfassung

Die Übertragung von Fremdblut wurde mit immunmodulatorischen Wirkungen in Verbindung gebracht, zu denen v. a. die Verlängerung des Überlebens von Nierentransplantaten bei Patienten mit Transfusionen in der Vorgeschichte gehört. Aber auch unerwünschte immunmodulatorische Wirkungen von Bluttransfusionen wie eine erhöhte Rezidivrate nach operativer Tumorresektion und häufigere, postoperative Infektionen wurden wiederholt beschrieben. Unklar blieb, ob diese Wirkungen im kausalen Zusammenhang mit der Transfusion stehen oder Folge prognostischer Faktoren sind, die zu einer Bluttransfusion führten.

Neuere Studien haben einige der postulierten immunmodulatorischen Wirkungen als Folge von Bluttransfusionen nicht bestätigt. Auch ist nach Einführung der generellen Leukozytendepletion von Blutkomponenten in Deutschland und einigen anderen europäischen Ländern ein antigenspezifischer Effekt solcher Blutpräparate auf das Immunsystem nicht mehr in derselben Weise zu erwarten. Indirekte immunmodulatorische Effekte, möglicherweise ausgelöst durch Lagerungsveränderungen der transfundierten Erythrozyten, wurden zwar vermutet sie sind bisher aber nicht ausreichend belegt. Derzeit werden zelluläre Therapieverfahren für eine gezielte Immunmodulation in der Behandlung von Transplantations- und Tumorpatienten entwickelt die zukünftig große Bedeutung erlangen können.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alexander JW, Light JA, Donaldson LA et al. (1999) Evaluation of pre- and posttransplant donor-specific transfusion/cyclosporine A in non-HLA identical living donor kidney transplant recipients. Cooperative Clinical Trials in Transplantation Research Group. Transplantation 68: 1117–1124PubMedCrossRefGoogle Scholar
  2. 2.
    Artlett CM, Smith JB, Jimenez SA (1998) Identification of fetal DNA and cells in skin lesions from women with systemic sclerosis. N Engl J Med 338: 1186–1191PubMedCrossRefGoogle Scholar
  3. 3.
    Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172: 603–606PubMedCrossRefGoogle Scholar
  4. 4.
    Blajchman MA, Dzik S, Vamvakas EC, Sweeney J, Snyder EL (2001) Clinical and molecular basis of transfusion-induced immunomodulation: summary of the proceedings of a state-of-the-art conference. Transfus Med Rev 15: 108–135PubMedCrossRefGoogle Scholar
  5. 5.
    Busch MP, Lee TH, Heitman J (1992) Allogeneic leukocytes but not therapeutic blood elements induce reactivation and dissemination of latent human immunodeficiency virus type 1 infection: implications for transfusion support of infected patients. Blood 80: 2128–2135PubMedGoogle Scholar
  6. 6.
    Busch OR, Hop WC, Hoynck van Papendrecht MA et al. (1993) Blood transfusions and prognosis in colorectal cancer. N Engl J Med 328: 1372–1376PubMedCrossRefGoogle Scholar
  7. 7.
    Collier AC, Kalish LA, Busch MP et al. (2001) Leukocyte-reduced red blood cell transfusions in patients with anemia and human immunodeficiency virus infection: the Viral Activation Transfusion Study: a randomized controlled trial. JAMA 285: 1592 – 1601PubMedCrossRefGoogle Scholar
  8. 8.
    Einsele H, Roosnek E, Rufer N et al. (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99: 3916–3922PubMedCrossRefGoogle Scholar
  9. 9.
    Fry JW, Morris PJ, Wood KJ (2002) Adenoviral transfer of a single donor-specific MHC class I gene to recipient bone marrow cells can induce specific immunological unresponsiveness in vivo. Gene Ther 9: 220–226PubMedCrossRefGoogle Scholar
  10. 10.
    Gantt CL (1981) Red blood cells for cancer patients. Lancet II: 363CrossRefGoogle Scholar
  11. 11.
    Hackstein H, Morelli AE, Thomson AW (2001) Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol 22: 437–442PubMedCrossRefGoogle Scholar
  12. 12.
    Hayamizu K, Zeng D, Huie P et al. (1998) Donor blood monocytes but not T or B cells facilitate long-term allograft survival after total lymphoid irradiation. Transplantation 66: 585–593PubMedCrossRefGoogle Scholar
  13. 13.
    Heiss MM, Mempel W, Delanoff C et al. (1994) Blood transfusion- modulated tumor recurrence: first results of a randomized study of autologous vs. allogeneic blood transfusion in colorectal cancer surgery. J Clin Oncol 12: 1859–1867PubMedGoogle Scholar
  14. 14.
    Heiss MM, Mempel W, Jauch KW et al. (1993) Beneficial effect of autologous blood transfusion on infectious complications after colorectal cancer surgery. Lancet 342: 1328–1333PubMedCrossRefGoogle Scholar
  15. 15.
    Hiesse C, Busson M, Buisson C et al. (2001) Multicenter trial of one HLA-DR-matched or mismatched blood transfusion prior to cadaveric renal transplantation. Kidney Int 60: 341–349PubMedCrossRefGoogle Scholar
  16. 16.
    Houbiers JG, Brand A, van de Watering LM et al. (1994) Randomised controlled trial comparing transfusion of leucocyte-depleted or buffy-coat-depleted blood in surgery for colorectal cancer. Lancet 344: 573–578PubMedCrossRefGoogle Scholar
  17. 17.
    Jenkins AM, Woodruff MF (1971) The effect of prior administration of donor strain blood or blood constituents on the survival of cardiac allografts in rats. Transplantation 12: 57–60PubMedCrossRefGoogle Scholar
  18. 18.
    Jensen LS, Andersen AJ, Christiansen PM et al. (1992) Postoperative infection and natural killer cell function following blood transfusion in patients undergoing elective colorectal surgery. Br J Surg 79: 513–516PubMedCrossRefGoogle Scholar
  19. 19.
    Jensen LS, Kissmeyer-Nielsen P, Wolff B, Qvist N (1996) Randomised comparison of leucocyte-depleted vs. buffy-coat-poor blood transfusion and complications after colorectal surgery. Lancet 348: 841–845PubMedCrossRefGoogle Scholar
  20. 20.
    Kolb HJ, Holler E (1997) Adoptive immunotherapy with donor lymphocyte transfusions. Curr Opin Oncol 9: 139–145PubMedCrossRefGoogle Scholar
  21. 21.
    Lagaaij EL, Hennemann IP, Ruigrok M et al. (1989) Effect of one- HLA-DR-antigen-matched and completely HLA-DR-mismatched blood transfusions on survival of heart and kidney allografts. N Engl J Med 321: 701–705PubMedCrossRefGoogle Scholar
  22. 22.
    Lang DJ (1972) Cytomegalovirus infections in organ transplantation and post transfusion. An hypothesis. Arch Gesamte Virusforsch 37: 365–377PubMedCrossRefGoogle Scholar
  23. 23.
    Lee TH, Donegan E, Slichter S, Busch MP (1995) Transient increase in circulating donor leukocytes after allogeneic transfusions in immunocompetent recipients compatible with donor cell proliferation. Blood 85: 1207–1214PubMedGoogle Scholar
  24. 24.
    Lee TH, Paglieroni T, Ohto H, Holland PV, Busch MP (1999) Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term microchimerism in severe trauma patients. Blood 93: 3127–3139PubMedGoogle Scholar
  25. 25.
    Magee CC, Sayegh MH (1997) Peptide-mediated immunosuppression. Curr Opin Immunol 9: 669–675PubMedCrossRefGoogle Scholar
  26. 26.
    Millan MT, Shizuru JA, Hoffmann P et al. (2002) Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation 73: 1386–1391PubMedCrossRefGoogle Scholar
  27. 27.
    Mynster T, Nielsen HJ (2000) The impact of storage time of transfused blood on postoperative infectious complications in rectal cancer surgery. Danish RANX05 Colorectal Cancer Study Group. Scand J Gastroenterol 35: 212–217PubMedCrossRefGoogle Scholar
  28. 28.
    Nestle FO (2002) Dendritic cell vaccination for the treatment of skin cancer. Recent Results Cancer Res 160: 165–169PubMedCrossRefGoogle Scholar
  29. 29.
    Nielsen HJ, Reimert CM, Pedersen AN et al. (1996) Time-dependent, spontaneous release of white cell- and platelet-derived bioactive substances from stored human blood. Transfusion 36: 960–965PubMedCrossRefGoogle Scholar
  30. 30.
    Niimi M, Roelen DL, Witzke O, van Rood JJ, Claas FH, Wood KJ (2000) The importance of H2 haplotype sharing in the induction of specific unresponsiveness by pretransplant blood transfusions. Transplantation 69: 411–417PubMedCrossRefGoogle Scholar
  31. 31.
    Ober C, Karrison T, Odem RR et al. (1999) Mononuclear-cell immunisation in prevention of recurrent miscarriages: a randomised trial. Lancet 354: 365–369PubMedCrossRefGoogle Scholar
  32. 32.
    Opelz G, Sengar DP, Mickey MR, Terasaki PI (1973) Effect of blood transfusions on subsequent kidney transplants. Transplant Proc 5: 253–259PubMedGoogle Scholar
  33. 33.
    Opelz G, Vanrenterghem Y, Kirste G et al. (1997) Prospective evaluation of pretransplant blood transfusions in cadaver kidney recipients. Transplantation 63: 964–967PubMedCrossRefGoogle Scholar
  34. 34.
    Puppo F, Ghio M, Contini P, Mazzei C, Indiveri F (2001) Fas, Fas ligand, and transfusion immunomodulation. Transfusion 41: 416 – 418PubMedCrossRefGoogle Scholar
  35. 35.
    Ruggeri L, Capanni M, Urbani E et al. (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295: 2097–2100PubMedCrossRefGoogle Scholar
  36. 36.
    Sharma RK, Rai PK, Kumar A et al. (1997) Role of preoperative donor-specific transfusion and cyclosporine in haplo-identical living related renal transplant recipients. Nephron 75: 20–24PubMedCrossRefGoogle Scholar
  37. 37.
    Starzl TE, Zinkernagel RM (2001) Transplantation tolerance from a historical perspective. Nature Rev Immunol 1: 233–239CrossRefGoogle Scholar
  38. 38.
    Tartter PI (1988) Blood transfusion and infectious complications following colorectal cancer surgery. Br J Surg 75: 789–792PubMedCrossRefGoogle Scholar
  39. 39.
    Tartter PI, Mohandas K, Azar P, Endres J, Kaplan J, Spivack M (1998) Randomized trial comparing packed red cell blood transfusion with and without leukocyte depletion for gastrointestinal surgery. Am J Surg 176: 462–466PubMedCrossRefGoogle Scholar
  40. 40.
    Taylor C, Faulk WP (1981) Prevention of recurrent abortion with leucocyte transfusions. Lancet II: 68–70Google Scholar
  41. 41.
    Titlestad IL, Ebbesen LS, Ainsworth AP et al. (2001) Leukocyte-depletion of blood components does not significantly reduce the risk of infectious complications. Results of a double-blinded, randomized study. Int J Colorectal Dis 16: 147–153PubMedCrossRefGoogle Scholar
  42. 42.
    Vamvakas EC (2001) Evidence-based practice of transfusion medicine. AABB Press, Bethesda/MDGoogle Scholar
  43. 43.
    van de Watering LM, Brand A, Houbiers JG et al. (2001) Perioperative blood transfusions, with or without allogeneic leucocytes, relate to survival, not to cancer recurrence. Br J Surg 88: 267–272CrossRefGoogle Scholar
  44. 44.
    van de Watering LM, Hermans J, Houbiers JG et al. (1998) Beneficial effects of leukocyte depletion of transfused blood on postoperative complications in patients undergoing cardiac surgery: a randomized clinical trial. Circulation 97: 562–568PubMedCrossRefGoogle Scholar
  45. 45.
    Yang CP, Shittu E, McManus B, Wood PJ, Bell EB (1998) Contrasting outcomes of donor-specific blood transfusion: effectiveness against cell-mediated but not antibody-mediated rejection. Transplantation 66: 639–645PubMedCrossRefGoogle Scholar
  46. 46.
    Zavazava N, Kabelitz D (2000) Alloreactivity and apoptosis in graft rejection and transplantation tolerance. J Leukoc Biol 68: 167–174PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • G. Bein

There are no affiliations available

Personalised recommendations