Skip to main content

Corepressors and Retinoblastoma Protein Function

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 254))

Abstract

The retinoblastoma protein (Rb) is a ubiquitous transcriptional repressor and a negative regulator of the Gl-to-S phase transition in the eukaryotic cell cycle. Through this inhibitory activity, Rb plays a critical role in suppressing neoplastic transformation and is disrupted in most cancers, either by mutation of the Rb gene (Lee et al. 1988; Shew et al. 1989; Bookstein et al. 1990; Kubota et al. 1995), or by functional inactivation of Rb by hyperphosphorylation (Sherr 1996). DNA tumor viruses transform cells, at least in part, by expressing oncoproteins such as adenovirus Ela, SV40 large tumor antigen, and human papillomavirus (HPV) E7 which bind and inactivate Rb (Decaprio et al. 1988; Dyson et al. 1989). In addition, Rb plays an important role in development as underscored by the embryonic lethal phenotype of Rb(−) knockout mice (Clarke et al. 1992; Jacks et al. 1992; Lee et al. 1992). The transcriptional repression by Rb is dependent on interaction of Rb with various corepressors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almasan A, Yin Y, Kelly RE, Lee EY, Bradley A, Li W, Bertino JR, Wahl GM (1995) Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci USA 92: 5436–5440

    Article  PubMed  CAS  Google Scholar 

  • Bagby S, Kim S, Maldonado E, Tong KI, Reinberg D, Ikura M (1995) Solution structure of the C-terminal core domain of human TFIIB: similarity to cyclin A and interaction with TATA-binding protein. Cell 82: 857–867

    Article  PubMed  CAS  Google Scholar 

  • Bandara LR, La Thangue NB (1991) Adenovirus Ela prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494–497

    Article  PubMed  CAS  Google Scholar 

  • Blake MC, Azizkhan JC (1989) Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo. Mol Cell Biol 9: 4994–5002

    PubMed  CAS  Google Scholar 

  • Bookstein R, Rio P, Madreperla SA, Hong F, Allred C, Grizzle WE, Lee WH (1990) Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci USA 87: 7762–7766

    Article  PubMed  CAS  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601

    Article  PubMed  CAS  Google Scholar 

  • Bremner R, Cohen BL, Sopta M, Hamel PA, Ingles CJ, Gallie BL, Phillips RA (1995) Direct transcriptional repression by pRB and its reversal by specific cyclins. Mol Cell Biol 15: 3256–3265

    PubMed  CAS  Google Scholar 

  • Brown NR, Noble ME, Endicott JA, Garman EF, Wakatsuki S, Mitchell E, Rasmussen B, Hunt T, Johnson LN (1995) The crystal structure of cyclin A. Structure 3: 1235–1247

    Article  PubMed  CAS  Google Scholar 

  • Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR (1991) The E2F transcription factor is a cellular target for the RB protein. Cell 65: 1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Chen PL, Scully P, Shew JY, Wang JY, Lee WH (1989) Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58: 1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Chow KN, Dean DC (1996) Domains A and B in the Rb pocket interact to form a transcriptional repressor motif. Mol Cell Biol 16: 4862–4868

    PubMed  CAS  Google Scholar 

  • Chow KN, Starostik P, Dean DC (1996) The Rb family contains a conserved cyclin-dependent-kinaseregulated transcriptional repressor motif. Mol Cell Biol 16: 7173–7181

    PubMed  CAS  Google Scholar 

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML, Berns A, te Riele H (1992) Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330

    Article  PubMed  CAS  Google Scholar 

  • Dalton S (1992) Cell cycle regulation of the human cdc2 gene. Embo J 11: 1797–1804

    PubMed  CAS  Google Scholar 

  • DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–283

    Article  PubMed  CAS  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J, Begemann M, Crabtree GR, Goff SP (1994) The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130

    Article  PubMed  CAS  Google Scholar 

  • Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262

    Article  PubMed  CAS  Google Scholar 

  • Dyson N, Howley PM, Munger K, Harlow E (1989) The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224 Gius DR, Ezhevsky SA, Becker-Hapak M, Nagahara H, Wei MC, Dowdy SF (1999) Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late GI. Cancer Res 59: 2577–2580

    Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389: 349–352

    Article  PubMed  CAS  Google Scholar 

  • Harbour JW (1998) Overview of RB gene mutations in patients with retinoblastoma. Implications for clinical genetic screening. Ophthalmology 105: 1442–1447

    Article  PubMed  CAS  Google Scholar 

  • Harbour JW, Luo RX, Dei Sante A, Postigo AA, Dean DC (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98: 859–869

    Article  PubMed  CAS  Google Scholar 

  • Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89: 341–347

    Article  PubMed  CAS  Google Scholar 

  • Hassig CA, Schreiber SL (1997) Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1: 300–308

    Google Scholar 

  • Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Helin K, Lees JA, Vidal M, Dyson N, Harlow E, Fattaey A (1992) A cDNA encoding a pRB-binding protein with properties of the transcription factor E2F. Cell 70: 337–350

    Article  PubMed  CAS  Google Scholar 

  • Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA (1992) Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70: 993–1006

    Article  PubMed  CAS  Google Scholar 

  • Hu QJ, Dyson N, Harlow E (1990) The regions of the retinoblastoma protein needed for binding to adenovirus E1 A or SV40 large T antigen are common sites for mutations. Embo J 9: 1147–1155

    PubMed  CAS  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA (1992) Effects of an Rb mutation in the mouse. Nature 359: 295–300

    Article  PubMed  CAS  Google Scholar 

  • Kaelin JWG, Krek W, Sellers WR, DeCaprio JA, Ajchenbaum F, Fuchs CS, Chittenden T, Li Y, Farnham PJ, Blanar MA (1992) Expression cloning of a eDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70: 351–364

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Cho Y (1997) Structural similarity between the pocket region of retinoblastoma tumour suppressor and the cyclin-box. Nat Struct Biol 4: 390–395

    Article  PubMed  CAS  Google Scholar 

  • Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13: 2339–2352

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Fujinami K, Uemura H, Dobashi Y, Miyamoto H, Iwasaki Y, Kitamura H, Shuin T (1995) Retinoblastoma gene mutations in primary human prostate cancer. Prostate 27: 314–320

    Article  PubMed  CAS  Google Scholar 

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Lai A, Lee JM, Yang WM, DeCaprio JA, Kaelin WG Jr, Seto E, Branton PE (1999) RBPI recruits both histone deacetylase-dependent and -independent repression activities to retinoblastoma family proteins. Mol Cell Biol 19: 6632 6641

    Google Scholar 

  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A (1992) Mice deficient for

    Google Scholar 

  • Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294

    Google Scholar 

  • Lee EY, To H, Shew JY, Bookstein R, Scully P, Lee WH (1988) Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241: 218–221

    Article  PubMed  CAS  Google Scholar 

  • Lee JO, Russo AA, Pavletich NP (1998) Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391: 859–865

    Article  PubMed  CAS  Google Scholar 

  • Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235: 1394–1399

    Article  PubMed  CAS  Google Scholar 

  • Lundberg AS, Weinberg RA (1998) Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 18: 753–761

    PubMed  CAS  Google Scholar 

  • Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92: 463 473

    Google Scholar 

  • Magnaghi JL, Groisman R, Naguibneva I, Robin P, Lorain S, Le VJ, Troalen F, Trouche D, Harel BA (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–605

    Article  Google Scholar 

  • Meloni AR, Smith EJ, Nevins JR (1999) A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc Natl Acad Sci USA 96: 9574–9579

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1998) Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ 9: 585–593

    PubMed  CAS  Google Scholar 

  • Nibu Y, Zhang H, Levine M (1998) Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 280: 101–104

    Article  PubMed  CAS  Google Scholar 

  • Ohtani K, DeGregori J, Nevins JR (1995) Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA 92: 12146–12150

    Article  CAS  Google Scholar 

  • Qian Y, Luckey C, Horton L, Esser M, Templeton DJ (1992) Biological function of the retinoblastoma protein requires distinct domains for hyperphosphorylation and transcription factor binding. Mol Cell Biol 12: 5363–5372

    PubMed  CAS  Google Scholar 

  • Ross JF, Liu X, Dynlacht BD (1999) Mechanism of transcriptional repression of E2F by the retino-blastoma tumor suppressor protein. Mol Cell 3: 195–205

    Article  PubMed  CAS  Google Scholar 

  • Schaeper U, Subramanian T, Lim L, Boyd JM, Chinnadurai G (1998) Interaction between a cellular protein that binds to the C-terminal region of adenovirus El A ( CtBP) and a novel cellular protein is disrupted by EI A through a conserved PLDLS motif. J Biol Chem 273: 8549–8552

    Google Scholar 

  • Sellers WR, Rodgers JW and Kaelin WJ (1995) A potent transrepression domain in the retino-blastoma protein induces a cell cycle arrest when bound to E2F sites. Proc Natl Acad Sci USA 92: 11544–11548

    Article  PubMed  CAS  Google Scholar 

  • Shan B, Farmer AA, Lee WH (1996) The molecular basis of E2F-l/DP-l-induced S-phase entry and apoptosis. Cell Growth Differ 7: 689–697

    PubMed  CAS  Google Scholar 

  • Shan B, Lee WH (1994) Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol Cell Biol 14: 8166–8173

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274: 1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Shew JY, Ling N, Yang XM, Fodstad O, Lee WH (1989) Antibodies detecting abnormalities of the retinoblastoma susceptibility gene product (ppl IORB) in osteosarcomas and synovial sarcomas. Oncogene Res 4: 205–214

    PubMed  CAS  Google Scholar 

  • Templeton DJ, Park SH, Lanier L, Weinberg RA (1991) Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc Natl Acad Sci USA 88: 3033–3037

    Article  PubMed  CAS  Google Scholar 

  • Thalmeier K, Synovzik H, Mertz R, Winnacker EL, Lipp M (1989) Nuclear factor E2F mediates basic transcription and trans-activation by Ela of the human MYC promoter. Genes Dev 3: 527–536

    Article  PubMed  CAS  Google Scholar 

  • Trouche D, Le CC, Muchardt C, Yaniv M, Kouzarides T (1997) RB and hbrm cooperate to repress the activation functions of E2F1. Proc Natl Acad Sci USA 94: 11268–11273

    Article  PubMed  CAS  Google Scholar 

  • Tsai KY, Hu Y, Macleod KF, Crowley D, Yamasaki L, Jacks T (1998) Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol Cell 2: 293–304

    Article  PubMed  CAS  Google Scholar 

  • Tyler JK, Kadonaga JT (1999) The “dark side” of chromatin remodeling: repressive effects on transcription. Cell 99: 443–446

    Article  PubMed  CAS  Google Scholar 

  • Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S, Dean DC (1995) Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375: 812–815

    Article  PubMed  CAS  Google Scholar 

  • Weintraub SJ, Prater CA, Dean DC (1992) Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358: 259–261

    Article  PubMed  CAS  Google Scholar 

  • Zhang HS, Postigo AA, Dean DC (1999) Active transcriptional repression by the Rb-E2F complex mediates GI arrest triggered by pl6INK4a, TGF(3, and contact inhibition. Cell 97: 53–61

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harbour, J.W., Dean, D.C. (2001). Corepressors and Retinoblastoma Protein Function. In: Privalsky, M.L. (eds) Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression. Current Topics in Microbiology and Immunology, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10595-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10595-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08709-7

  • Online ISBN: 978-3-662-10595-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics