Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 254))

Abstract

This review focuses on transcriptional corepressors in the early embryo of the fruit fly Drosophila melanogaster, but also considers their roles in other developmental contexts, as well as related proteins in other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronson BD, Fisher AL, Blechman K, Caudy M, Gergen JP (1997) Groucho-dependent and -independent repression activities of Runt domain proteins. Mol Cell Biol 17: 5581–5587

    PubMed  CAS  Google Scholar 

  • Barolo S, Levine M (1997) Hairy mediates dominant repression in the Drosophila embryo. Embo J 16: 2883–2891

    Article  PubMed  CAS  Google Scholar 

  • Belvin MP, Anderson KV (1996) A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 12: 393–416

    Article  PubMed  CAS  Google Scholar 

  • Boyd JM, Subramanian T, Schaeper U, La Regina M, Bayley S, Chinnadurai G (1993) A region in the C-terminus of adenovirus 2/5 Ela protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. Embo J 12: 469–478

    PubMed  CAS  Google Scholar 

  • Brannon M, Brown JD, Bates R. Kimelman D. Moon RT (1999) XCtBP is a XTcf-3 co-repressor with roles throughout Xenopu development. Development 126: 3159–3170

    PubMed  CAS  Google Scholar 

  • Cai HN, Arnosti DN. Levine M (1996) Long-range repression in the Drosophila embryo. Proc Natl Acad Sci USA 93:9309–9314

    Google Scholar 

  • Cavallo R, Rubenstein D, Peifer M (1997) Armadillo and dTCF: a marriage made in the nucleus. Curr Opin Genet Dev 7: 459–466

    Article  PubMed  CAS  Google Scholar 

  • Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, Peifer M, Bejsovec A (1998) Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395: 604–608

    Google Scholar 

  • Chen G. Fernandez J, Mische S. Courey AJ (1999) A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 13: 2218–2230

    Google Scholar 

  • Chen G, Nguyen PH, Courey AJ (1998) A role for Groucho tetramerization in transcriptional repression. Mol Cell Biol 18: 7259–7268

    PubMed  CAS  Google Scholar 

  • Choi CY, Kim YH, Kwon HJ, Kim Y (1999a) The homeodomain protein NK-3 recruits groucho and a histone deacetylase complex to repress transcription. J Biol Chem 274: 33194–33197

    Article  PubMed  CAS  Google Scholar 

  • Choi CY, Lee YM, Kim YH, Park T, Jeon BH, Schulz RA, Kim Y (19996) The homeodomain transcription factor NK-4 acts as either a transcriptional activator or repressor and interacts with the p300 coactivator and the groucho corepressor. J Biol Chem 274: 31543–31552

    Google Scholar 

  • Criqui-Filipe P, Ducret C, Maira SM, Wasylyk B (1999) Net, a negative Ras-switchable TCF, contains a second inhibition domain, the CID, that mediates repression through interactions with CtBP and deacetylation. Embo J 18: 3392–3403

    Article  PubMed  CAS  Google Scholar 

  • De Rubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K, Spierer P (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384: 589–591

    Article  PubMed  Google Scholar 

  • Driever W (1993) Maternal control of anterior development in the Drosophila embryo. In: M. Bate and A. Martinez Arias (eds) The development of Drosophila melanogaster. pp. 301–324. Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Dubnicoff T, Valentine SA, Chen G, Shi T, Lengyel JA, Paroush Z, Courey AJ (1997) Conversion of dorsal from an activator to a repressor by the global corepressor Groucho. Genes Dev 11: 2952–2957

    Article  PubMed  CAS  Google Scholar 

  • Duffy JB, Perrimon N (1994) The torso pathway in Drosophila: lessons on receptor tyrosine kinase signaling and pattern formation. Dev Biol 166: 380–395

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DG, Smith MM, Roth SY (1996) Repression domain of the yeast global repressor Tupl interacts directly with histones H3 and F14. Genes Dev 10: 1247–1259

    Article  PubMed  CAS  Google Scholar 

  • Ferguson EL, Anderson KV (1992) Decapentaplegic acts as a morphogen to organize dorsal-ventral pattern in the Drosophila embryo. Cell 71: 451–461

    Article  PubMed  CAS  Google Scholar 

  • Fisher AL, Caudy M (1998) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12: 1931–1940

    Article  PubMed  CAS  Google Scholar 

  • Fisher AL, Ohsako S, Candy M (1996) The WRPW motif of the hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol Cell Biol 16: 2670–2677

    PubMed  CAS  Google Scholar 

  • Florence B, Guichet A, Ephrussi A, Laughon A (1997) Ftz-FI is a cofactor in Ftz activation of the Drosophila engrailed gene. Development 124: 839–847

    PubMed  CAS  Google Scholar 

  • Fox AH, Liew C, Holmes M, Kowalski K, Mackay J, Crossley M, (1999) Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. Embo J 18: 2812–2822

    Article  PubMed  CAS  Google Scholar 

  • Furusawa T, Moribc H, Kondoh H. Higashi Y (1999) Identification of CtBPI and CtBP2 as Corepressors of Zinc Finger- Homeodomain Factor deltaEFl. Mol Cell Biol 19: 8581–8590

    PubMed  CAS  Google Scholar 

  • Goldstein RE, Jimenez G. Cook O, Gur D, Paroush Z (1999) Huckebein repressor activity in Drosophila terminal patterning is mediated by Groucho. Development 126: 3747–3755

    CAS  Google Scholar 

  • Gray S, Levine M (1996a) Short-range transcriptional repressors mediate both quenching and direct repression within complex loci in Drosophila. Genes Dev 10: 700–710

    Article  PubMed  CAS  Google Scholar 

  • Gray S, Levine M (1996b) Transcriptional repression in development. Curr Opin Cell Biol 8: 358–364

    Article  PubMed  CAS  Google Scholar 

  • Grbavec D, Lo R, Liu Y. Greenfield A, Stifani S (1999) Groucho/transducin-like enhancer of split (TLE) family members interact with the yeast transcriptional co-repressor SSN6 and mammalian SSN6related proteins: implications for evolutionary conservation of transcription repression mechanisms. Biochem J 337: 13–17

    Article  PubMed  CAS  Google Scholar 

  • Grbavec D, Stifani S (1996) Molecular interaction between TLEI and the carboxyl-terminal domain of HES-1 containing the WRPW motif. Biochem Biophys Res Commun 223: 701–705

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1997) Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol 9: 383–387

    Article  PubMed  CAS  Google Scholar 

  • Guichet A, Copeland JW, Erdelyi M, Hlousek D, Zavorszky P, Ho J, Brown S, Percival-Smith A, Krause HM, Ephrussi A (1997) The nuclear receptor homologue Ftz-F1 and the homeodomain protein Ftz are mutually dependent cofactors. Nature 385: 548–552

    Article  PubMed  CAS  Google Scholar 

  • Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev 62: 465–503

    PubMed  CAS  Google Scholar 

  • Hanna-Rose W, Hansen U (1996) Active repression mechanisms of eukaryotic transcription repressors. Trends Genet 12: 229–234

    Article  PubMed  CAS  Google Scholar 

  • Howard K, Ingham P (1986) Regulatory interactions between the segmentation genes fushi tarazu, hairy, and engrailed in the Drosophila blastoderm. Cell 44: 949–957

    Article  PubMed  CAS  Google Scholar 

  • lmai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K, Yazaki Y, Hirai H (1998) TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem Biophys Res Commun 252: 582–589

    Article  Google Scholar 

  • Ingham PW, Baker NE, Martinez-Arias A (1988) Regulation of segment polarity genes in the Drosophila blastoderm by fushi tarazu and even skipped. Nature 331: 73–75

    Article  PubMed  CAS  Google Scholar 

  • Ish-Horowicz D, Pinchin SM (1987) Pattern abnormalities induced by ectopic expression of the Drosophila gene hairy are associated with repression of ftz transcription. Cell 51: 405–415

    Article  PubMed  CAS  Google Scholar 

  • Jimenez G, Paroush Z, Ish-Horowicz D (1997) Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev 11: 3072–3082

    Article  PubMed  CAS  Google Scholar 

  • Jimenez G, Verrijzer CP, Ish-Horowicz D (1999) A conserved motif in goosecoid mediates grouchodependent repression in Drosophila embryos. Mol Cell Biol 19: 2080–2087

    PubMed  CAS  Google Scholar 

  • Kehle J, Beuchle D, Treuheit S, Christen B, Kennison JA, Bienz M, Muller J (1998) dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282: 1897–1900

    Google Scholar 

  • Knoepfer PS, Eisenman RN (1999) Sin meets NuRD and other tails of repression. Cell 99: 447–450

    Article  Google Scholar 

  • Kuchin S, Carlson M (1998) Functional relationships of Srb10-SrbI l kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tupl. Mol Cell Biol 18: 1163–1171

    PubMed  CAS  Google Scholar 

  • La Rosee-Borggreve A, Häder T, Wainwright D, Sauer F, Jäckle H (1999) Hairy stripe 7 element mediates activation and repression in response to different domains and levels of Krüppel in the Drosophila embryo. Mech Dev 89: 133–140

    Article  PubMed  CAS  Google Scholar 

  • Lawrence PA, Johnston P, Macdonald P, Struhl G (1987) Borders of parasegments in Drosophila embryos are delimited by the fushi tarazu and even-skipped genes. Nature 328: 440–442

    Article  PubMed  CAS  Google Scholar 

  • Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paroush Z, Groner Y (1998) Transcriptional repression by AMLI and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 95: 11590–11595

    Article  PubMed  CAS  Google Scholar 

  • Mallo M, Gendron-Maguire M, Harbison ML, Gridley T (1995) Protein characterization and targeted disruption of Grg, a mouse gene related to the groucho transcript of the Drosophila Enhancer of split complex. Dev Dyn 204: 338–347

    Article  PubMed  CAS  Google Scholar 

  • Mannervik M, Levine M (1999) The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc Natl Acad Sci USA 96: 6797–6801

    Article  PubMed  CAS  Google Scholar 

  • Mannervik M, Nibu Y, Zhang H, Levine M (1999) Transcriptional coregulators in development. Science 284: 606–609

    Article  PubMed  CAS  Google Scholar 

  • Manoukian AS, Krause HM (1992) Concentration-dependent activities of the even-skipped protein in Drosophila embryos. Genes Dev 6: 1740–1751

    Article  PubMed  CAS  Google Scholar 

  • Martinez Arias A (1993) Development and patterning of the larval epidermis of Drosophila. In: M. Bate and A. Martinez Arias (eds) The development of Drosophila melanogaster. pp. 517–608. Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Meloni AR, Smith EJ, Nevins JR (1999) A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc Natl Acad Sci USA 96: 9574–9579

    Article  PubMed  CAS  Google Scholar 

  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371: 297–300

    Article  PubMed  CAS  Google Scholar 

  • Neufeld TP, Tang AH, Rubin GM (1998) A genetic screen to identify components of the sina signaling pathway in Drosophila eye development. Genetics 148: 277–286

    PubMed  CAS  Google Scholar 

  • Nibu Y, Zhang H, Levine M (1998a) Interaction of short-range repressors with Drosophila CtBP in the embryo. Science 280: 101–104

    Article  PubMed  CAS  Google Scholar 

  • Nibu Y, Zhang H, Bajor E, Barolo S, Small S, Levine M (1998b) dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. Embo J 17: 7009–7020

    Google Scholar 

  • Palaparti A, Baratz A, Stifani S (1997) The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J Biol Chem 272: 26604–26610

    Article  PubMed  CAS  Google Scholar 

  • Pankratz MJ, Rickle H (1993) Blastoderm segmentation. In: M. Bate and A. Martinez Arias (eds) The development of Drosophila melanogaster. pp. 467–516.

    Google Scholar 

  • Cold Spring Harbor Laboratory Press. Parkhurst SM (1998) Groucho: making its Marx as a transcriptional co-repressor. Trends Genet 14: 130–132

    Article  PubMed  CAS  Google Scholar 

  • Paroush Z, Finley RL Jr, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowicz D (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell 79: 805–815

    Article  PubMed  CAS  Google Scholar 

  • Paroush Z, Wainwright SM, Ish-Horowicz D (1997) Torso signalling regulates terminal patterning in Drosophila by antagonising Groucho-mediated repression. Development 124: 3827–3834

    PubMed  CAS  Google Scholar 

  • Pirrotta V (1998) Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93: 333–336

    Article  PubMed  CAS  Google Scholar 

  • Poortinga G, Watanabe M, Parkhurst SM (1998) Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression. Embo J 17: 2067–2078

    Google Scholar 

  • Postigo AA, Dean DC (1999) ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci USA 96: 6683–6688

    Article  PubMed  CAS  Google Scholar 

  • Redd MJ, Arnaud MB, Johnson AD (1997) A complex composed of tupi and ssn6 represses transcription in vitro. J Biol Chem 272: 11193–11197

    Article  PubMed  CAS  Google Scholar 

  • Ren B, Chee KJ, Kim TH, Maniatis T (1999) PRDI-BFI/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev 13: 125–137

    Article  PubMed  CAS  Google Scholar 

  • Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, van de Wetering M, Destree O. Clevers H (1998) The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395: 608–612

    Article  PubMed  CAS  Google Scholar 

  • Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G (1995) Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus ElA involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci USA 92: 10467–10471

    Article  PubMed  CAS  Google Scholar 

  • Schaeper U, Subramanian T, Lim L, Boyd JM, Chinnadurai G (1998) Interaction between a cellular protein that hinds to the C-terminal region of adenovirus EIA ( CtBP) and a novel cellular protein is disrupted by EIA through a conserved PLDLS motif. J Biol Chem 273: 8549–8552

    Google Scholar 

  • Scully R, Anderson SF, Chao DM, Wei W, Ye L, Young RA, Livingston DM, Parvin JD (1997) BRCAI is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci USA 94: 5605–5610

    Article  PubMed  CAS  Google Scholar 

  • Sewalt RG, Gunster MJ, van der Vlag J, Satijn DP, Otte AP (1999) C-Terminal binding protein is a transcriptional repressor that interacts with a specific class of vertebrate Polycomb proteins. Mol Cell Biol 19: 777–787

    PubMed  CAS  Google Scholar 

  • Small S, Kraut R, Hoey T, Warrior R, Levine M (199la) Transcriptional regulation of a pair-rule stripe in Drosophila. Genes Dev 5: 827–839

    Google Scholar 

  • Small S, Levine M (1991 b) The initiation of pair-rule stripes in the Drosophila blastoderm. Curr Opin Genet Dev 1: 255–260

    Google Scholar 

  • Smith ST, Jaynes JB (1996) A conserved region of engrailed, shared among all en-, gsc-, Nkl-, Nk2- and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122: 3141–3150

    PubMed  CAS  Google Scholar 

  • Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Sollerbrant K, Chinnadurai G. Svensson C (1996) The CtBP binding domain in the adenovirus EIA protein controls CR1-dependent transactivation. Nucleic Acids Res 24: 2578–2584

    CAS  Google Scholar 

  • St Johnston D, Nusslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68: 201–219

    Article  Google Scholar 

  • Stanojevic D, Small S, Levine M (1991) Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science 254: 1385–1387

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12: 599–606

    Article  PubMed  CAS  Google Scholar 

  • Sundqvist A, Sollerbrant K, Svensson C (1998) The carboxy-terminal region of adenovirus ElA activates transcription through targeting of a C-terminal binding protein-histone deacetylase complex. FEBS Lett 429: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Tsai CC, Kao HY, Yao TP, McKeown M, Evans RM (1999) SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR- mediated repression is critical for development. Mol Cell 4: 175–186

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Crossley M (1998) Cloning and characterization of mCtBP2, a co-repressor that associates with basic Kruppel-like factor and other mammalian transcriptional regulators. Embo J 17: 5129–5140

    Article  PubMed  CAS  Google Scholar 

  • Valentine SA, Chen G, Shandala T, Fernandez J, Mische S, Saint R, Courey AJ (1998) Dorsal-mediated repression requires the formation of a multiprotein repression complex at the ventral silencer. Mol Cell Biol 18: 6584–6594

    PubMed  CAS  Google Scholar 

  • Weigert R, Silletta MG, Spano S, Turacchio G, Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M, Facchiano F, Burger KN, Mironov A, Luini A, Corda D (1999) CtBP/ BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402: 429–433

    Article  PubMed  CAS  Google Scholar 

  • Wharton KA, Ray RP, Gelbart WM (1993) An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117: 807–822

    PubMed  CAS  Google Scholar 

  • Winnier AR, Meir JY, Ross JM, Tavernarakis N, Driscoll M, Ishihara T, Katsura I, Miller DM 3rd (1999) UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. Genes Dev 13: 2774–2786

    Article  PubMed  CAS  Google Scholar 

  • Wong AK, Ormonde PA, Pero R, Chen Y, Lian L, Salada G, Berry S, Lawrence Q, Dayananth P, Ha P, Tavtigian SV, Teng DH, Bartel PL (1998) Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 17: 2279–2285

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273: 25388–25392

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Li W, Su K, Yussa M, Han W, Perrimon N, Pick L (1997) The nuclear hormone receptor Ftz-FI is a cofactor for the Drosophila homeodomain protein Ftz. Nature 385: 552–555

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Levine M (1999) Groucho and dCtBP mediate separate pathways of transcriptional repression in the Drosophila embryo. Proc Natl Acad Sci USA 96: 535–540

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mannervik, M. (2001). Corepressor Proteins in Drosophila Development. In: Privalsky, M.L. (eds) Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression. Current Topics in Microbiology and Immunology, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10595-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10595-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08709-7

  • Online ISBN: 978-3-662-10595-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics