Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 254))

Abstract

The identity and function of a eukaryotic cell are defined to a large extent by the complex program of gene expression that each cell undertakes. The importance of maintaining tight regulation over the expression of the eukaryotic genome is intuitively obvious on many levels. From a competitive standpoint, it is important to reduce the metabolic load on a cell by keeping genes encoding synthetic or catabolic functions silent until such time as nutritional and environmental conditions warrant their expression. From a functional standpoint, certain processes in the cell must be temporally regulated, as many processes are contingent upon the completion of previous ones. Developmentally, the ectopic expression of a cell fate determinant can drastically alter the identity of a cell. Thus, the proper control over transcription is critical for nearly all aspects of cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auble DT, Hahn S (1993) An ATP-dependent inhibitor of TBP binding to DNA. Genes Dev 7: 844–856

    Article  PubMed  CAS  Google Scholar 

  • Auble DT, Hansen KE, Mueller CGF, Lane WS, Thorner J, Hahn S (1994) Motl, a global repressor of RNA polymerase II transcription inhibits TBP binding to DNA by an ATP-dependent mechanism. Genes Dev 8: 1920–1934

    Article  PubMed  CAS  Google Scholar 

  • Auble DT, Steggerda SM (1999) Testing for DNA tracking by MOT1, a SNF2/SWI2 protein family member. Mol Cell Biol 19: 412–423

    PubMed  CAS  Google Scholar 

  • Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 767–776

    Article  PubMed  CAS  Google Scholar 

  • Basrai MA, Kingsbury J, Koshland D, Spencer F, Hieter P (1996) Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae. Mol Cell Biol 16: 2838–2847

    PubMed  CAS  Google Scholar 

  • Bortvin A, Winston F (1996) Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272: 1473–1476

    Article  PubMed  CAS  Google Scholar 

  • Bowdish KS, Mitchell AP (1993) Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol Cell Biol 13: 2172–2181

    PubMed  CAS  Google Scholar 

  • Braunstein M, Holmes SG, Broach JR (1997) Heterochromatin and regulation of gene expression in Saccharomyces cerevisiae. In: Otte AP, van Driel R (eds) Nuclear organization, chromatin structure, and gene expression. Oxford University Press, Oxford, UK

    Google Scholar 

  • Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR (1993) Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7: 592–604

    Article  PubMed  CAS  Google Scholar 

  • Braunstein M, Sobel RE, Allis CD, Turner BM, Broach JR (1996) Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol 16: 4349–4356

    PubMed  CAS  Google Scholar 

  • Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1998) Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391: 597–601

    Article  PubMed  CAS  Google Scholar 

  • Cang Y, Auble DT, Prelich G (1999) A new regulatory domain on the TATA-binding protein. EMBO J 18: 6662–6671

    Article  PubMed  CAS  Google Scholar 

  • Carlson M (1997) Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Ann Rev Cell Dev Biol 13: 1–23

    Article  CAS  Google Scholar 

  • Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR (1999a) Regulation of transcription by a protein methyltransferase. Science 284: 2174–2177

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Fernandez J, Mische S, Courey AJ (1999b) A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development. Genes Dev 13: 2218–2230

    Article  PubMed  CAS  Google Scholar 

  • Chen S, West RW Jr, Johnson SL, Gans H, Kruger B, Ma J (1993) TSF3, a global regulatory protein that silences transcription of yeast GAL genes, also mediates repression by a2 repressor and is identical to SIN4. Mol Cell Biol 13: 831–840

    PubMed  CAS  Google Scholar 

  • Choi CY, Kim YH, Kwon HJ, Kim Y (1999) The homeodomain protein NK-3 recruits groucho and a histone deacetylase complex to repress transcription. J Biol Chem 274: 33194–33197

    Article  PubMed  CAS  Google Scholar 

  • Clark-Adams CD, Norris D, Osley MA, Fassler JS, Winston F (1988) Changes in histone gene dosage alter transcription in yeast. Genes Dev 2: 150–159

    Article  PubMed  CAS  Google Scholar 

  • Clark-Adams CD, Winston F (1987) The SPT6 gene is essential for growth and is required for delta-mediated transcription in Saccharomyces cerevisiae. Mol Cell Biol 7: 679–686

    PubMed  CAS  Google Scholar 

  • Collart MA (1996) The NOT, SPT3, and MOTl genes functionally interact to regulate transcription at core promoters. Mol Cell Biol 16: 6668–6676

    Google Scholar 

  • Collart MA, Struhl K (1993) CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. Embo J 12: 177–186

    PubMed  CAS  Google Scholar 

  • Collart MA, Struhl K (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8: 525–537

    Article  PubMed  CAS  Google Scholar 

  • Costanzo MC, Hogan JD, Cusick ME, Davis BP, Fancher AM, Hodges PE, Kondu P, Lengieza C, Lew-Smith JE, Lingner C, Robcrg-Perez KJ, Tillberg M, Brooks JE, Garrets JI (2000) The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucl Acids Res 28: 73–76

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG (1994) Repression versus activation in the control of gene transcription. Trends Biochem Sci 19: 38–42

    Article  PubMed  CAS  Google Scholar 

  • Davie JR, Chadee DN (1998) Regulation and regulatory parameters of histone modifications. J Cell Biochem 31: 203 213

    Google Scholar 

  • Davis JL, Kunisawa R. Thorner J (1992) A presumptive helicase (MOTI gene product) affects gene expression and is required for viability in the yeast Saccharomyces cerevisiae. Mol Cell Biol 12: 1879–1892

    Google Scholar 

  • De Rubertis F, Kadosh D, Henchoz S, Pauli D, Reuter G, Struhl K, Spierer P (1996) The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature 384: 589–591

    Article  PubMed  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–6686

    Article  PubMed  CAS  Google Scholar 

  • DeSilva H, Lee K, Osley MA (1998) Functional dissection of yeast Hirlp, a WD repeat-containing transcriptional corepressor. Genetics 148: 657–667

    PubMed  CAS  Google Scholar 

  • Dimova D, Nackerdien Z, Furgeson S, Eguchi S, Osley MA (1999) A role for transcriptional repressors in targeting the yeast Swi/Snf complex. Mol Cell 4: 75–83

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Adams CR, Rine J. Kamakaka RT (1999) The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 13: 698–708

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DG. Smith MM, Roth SY (1996) Repression domain of the yeast global repressor Tupl interacts directly with histones H3 and H4. Genes Dev 10: 1247–1259

    Article  PubMed  Google Scholar 

  • Edmondson DG, Zhang W, Watson A, Xu W, Bone JR, Yu Y, Stillman D, Roth SY (1998) In vivo functions of histone acetylation/deacetylation in Tuplp repression and Gcn5p activation. Cold Spring Harbor Symp Quant Biol 63: 459–468

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Morris GD, Reuter G, Hartnett T (1992) The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics 131: 345–352

    PubMed  CAS  Google Scholar 

  • Fischle W, Emiliani S, Hendzel MJ, Nagase T, Nomura N, Voelter W, Verdin E (1999) A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA Ip. J Biol Chem 274: 11713–11720

    Article  PubMed  CAS  Google Scholar 

  • Fisher AL, Caudy M (1998) Grouch() proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12: 1931–1940

    Article  PubMed  CAS  Google Scholar 

  • Fletcher TM, Hansen JC (1995) Core histone tail domains mediate oligonucleosome folding and nude- osomal DNA organization through distinct molecular mechanisms. J Biol Chem 270: 25359–25362

    Article  PubMed  CAS  Google Scholar 

  • Gadbois EL, Chao DM, Reese JC, Green MR, Young RA (1997) Functional antagonism between RNA polymerase II holoenzyme and global negative regulator NC2 in vivo. Proc Natl Acad Sci USA 94: 3145–3150

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ramirez M, Rocchini C, Ausio J (1995) Modulation of chromatin folding by histone acetylation. J Biol Chem 270: 17923–17928

    Article  PubMed  CAS  Google Scholar 

  • Goppelt A, Stelzer G, Lottspeich F. Meisterernst M (1996) A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. Embo J 15: 3105–3116

    PubMed  CAS  Google Scholar 

  • Gottschling DE (1992) Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc Natl Acad Sci USA 89: 4062–4065

    Article  PubMed  CAS  Google Scholar 

  • Greenfield A, Scott D, Pennisi D. Ehrmann I, Ellis P, Cooper L, Simpson E, Koopman P (1996) An H-YDE) epitope is encoded by a novel mouse Y chromosome gene. Nature Genet 14: 474–478

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM, Hassig CA. Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci USA 96: 4868–4873

    Google Scholar 

  • Grunstein M (1998) Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93: 325–328

    Article  PubMed  CAS  Google Scholar 

  • Hampsey M (1998) Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbial Mol Biol Rev 62: 465–503

    CAS  Google Scholar 

  • Han M, Chang M, Kim UJ, Grunstein M (1987) Histone H2B repression causes cell-cycle-specific arrest in yeast: effects on chromosomal segregation, replication, and transcription. Cell 48: 589–597

    Article  PubMed  CAS  Google Scholar 

  • Han M, Kim UJ, Kayne P, Grunstein M (1988) Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. Embo J 7: 2221–2228

    PubMed  CAS  Google Scholar 

  • Hansen JC, Tse C, Wolfe AP (1998) Structure and function of the core histone N-termini: more than meets the eye. Biochem 37: 17637–17641

    Article  CAS  Google Scholar 

  • Hartzog GA, Wada T, Handa H, Winston F (1998) Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev 12: 357–369

    Article  PubMed  CAS  Google Scholar 

  • Hebbes TR, Thorne AW, Clayton AL, Crane-Robinson C (1992) Histone acetylation and globin gene switching. Nucleic Acids Res 20: 1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. Embo J 7: 1395–1402

    PubMed  CAS  Google Scholar 

  • Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: A molecular model for the formation of heterochromatin in yeast. Cell pp 583–592

    Google Scholar 

  • Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Hereford L, Bromley S, Osley MA (1982) Periodic transcription of yeast histone genes. Cell 30: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Hereford LM, Osley MA, Ludwig TR, McLaughlin CS (1981) Cell-cycle regulation of yeast histone mRNA. Cell 24: 367–375

    Article  PubMed  CAS  Google Scholar 

  • Herschbach BM, Arnaud MB, Johnson AD (1994) Transcriptional repression directed by the yeast alpha 2 protein in vitro. Nature 370: 309–311

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342: 749–757

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Zhou Z, Elledge St (1998) The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell 94: 595–605

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Kurokawa M, Tanaka K, Friedman AD, Ogawa S, Mitani K, Yazaki Y, Hirai H (1998) TLE, the human homolog of groucho, interacts with AMLI and acts as a repressor of AML1-induced trans-activation. Biochem Biophys Res Commun 252: 582–589

    Article  PubMed  CAS  Google Scholar 

  • Jiang YW, Stillman DJ (1992) Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae. Mol Cell Biol 12: 4503–4514

    PubMed  CAS  Google Scholar 

  • Jiang YW, Stillman DJ (1996) Epigenetic effects on yeast transcription caused by mutations in an actin-related protein present in the nucleus. Genes Dev 10: 604–619

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Wang Y, Walker DL, Dong H, Conley C, Johansen J, Johansen KM (1999) JIL-l: a novel chromosomal tandem kinase implicated in transcriptional regulation in Drosophila. Mol Cell 4: 129–135

    Article  PubMed  CAS  Google Scholar 

  • Kadonaga JT (1998) Eukaryotic Transcription — an interlaced network of transcription factors and chromatin-modifying enzymes. Cell 92: 307–313

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89: 365–371

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1998a) Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 12: 797–805

    Article  PubMed  CAS  Google Scholar 

  • Kadosh D, Struhl K (1998b) Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18: 5121–5127

    PubMed  CAS  Google Scholar 

  • Karnitz L, Morrison M, Young ET (1992) Identification and characterization of three genes that affect expression of ADH2 in Saccharomyces cerevisiae. Genetics 132: 351–359

    PubMed  CAS  Google Scholar 

  • Kasten MM, Dorland S, Stillman DJ (1997) Large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol Cell Biol 17: 4852–4858

    PubMed  CAS  Google Scholar 

  • Kaufman PD, Cohen JL, Osley MA (1998) Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol Cell Biol 18: 4793–4806

    PubMed  CAS  Google Scholar 

  • Keleher CA, Redd MJ, Schultz J, Carlson M, Johnson AD (1992) Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68: 709–719

    Article  PubMed  CAS  Google Scholar 

  • Kim UJ, Han M, Kayne P, Grunstein M (1988) Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. Embo J 7: 2211–2219

    PubMed  CAS  Google Scholar 

  • Kingston RE, Bunker CA, Imbalzano AN (1996) Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev 10: 905–920

    Article  PubMed  CAS  Google Scholar 

  • Komachi K, Johnson AD (1997) Residues in the WD repeats of Tup1 required for interaction with alpha2. Mol Cell Biol 17: 6023–6028

    PubMed  CAS  Google Scholar 

  • Komachi K, Redd MJ, Johnson AD (1994) The WD repeats of Tupi interact with the homeo domain protein alpha 2. Genes Dev 8: 2857–2867

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD (1998) Mechanism and regulation of yeast RNA polymerase II transcription. Cold Spring Harbor Symp Quant Biol 63: 229–232

    Article  PubMed  CAS  Google Scholar 

  • Kuchin S, Yeghiayan P, Carlson M (1995) Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc Natl Acad Sci USA 92: 4006–4010

    Article  PubMed  CAS  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20: 615–626

    Article  PubMed  CAS  Google Scholar 

  • Kuras L, Struhl K (1999) Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399: 609–613

    Article  PubMed  CAS  Google Scholar 

  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Lai A, Lee JM, Yang WM, DeCaprio JA, Kaelin WG Jr, Seto E, Branton PE (1999) RBP1 recruits both histone deacetylase-dependent and —independent repression activities to Retinoblastoma family proteins. Mol Cell Biol 19: 6632–6641

    PubMed  CAS  Google Scholar 

  • Lamour V, Lécluse Y, Desmaze C, Spector M, Bodescot M, Aurias A, Osley MA, Lipinski M (1995) A human homologue of the S. cerevisiae HIR1 and HI R2 transcriptional repressors cloned from the DiGeorge syndrome critical region. Hum Mol Genet 4: 791–799

    Article  PubMed  CAS  Google Scholar 

  • Lee TI, Wyrick JJ, Koh SS, Jennings EG, Gadbois EL, Young RA (1998) Mol Cell Biol 18: 4455–4462

    PubMed  CAS  Google Scholar 

  • Liu HY, Badarinarayana V, Audino DC, Rappsilber J, Mann M, Denis CL (1998) The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. Embo J 17: 1096 1106

    Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8-angstrom resolution. Nature 389: 251–260

    Article  PubMed  CAS  Google Scholar 

  • Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92: 463–473

    Article  PubMed  CAS  Google Scholar 

  • Madison JM, Winston F (1997) Evidence that Spt3 functionally interacts with Mott, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Mol Cell Biol 17: 287 295

    Google Scholar 

  • Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, Troalen F, Trouche D, Harel-Bellan A (1998) Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391: 601–605

    Article  PubMed  CAS  Google Scholar 

  • Maldonado E, Hampsey M, Reinberg D (1999) Repression: Targeting the heart of the matter. Cell 99: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Malone EA, Fassler JS, Winston F (1993) Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Mol Gen Genet 237: 449–459

    PubMed  CAS  Google Scholar 

  • Matsui T, Segall J, Weil PA, Roeder RG (1980) Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem 255: 11992–11996

    PubMed  CAS  Google Scholar 

  • McKenzie EA, Kent NA, Dowell SJ, Moreno F, Bird LE, Mellor J (1993) The centromere and promoter factor 1, CPF1, of Saccharomyces cerevisiae modulates gene activity through a family of factors including SPT21, RPD1 (SIN3), RPD3 and CCR4. Mol Gen Genet 240: 374–386

    PubMed  CAS  Google Scholar 

  • Meisterernst M, Roeder RG (1991) Family of proteins that interact with TFIID and regulate promoter activity. Cell 67: 557–567

    Article  PubMed  CAS  Google Scholar 

  • Mermelstein F, Yeung K, Cao J, Inostroza JA, Erdjument-Bromage H, Eagelson K, Landsman D, Levitt P, Tempst P, Reinberg D (1996) Requirement of a corepressor for Drl-mediated repression of transcription. Genes Dev 10: 1033–1048

    Article  PubMed  CAS  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. Embo J 18: 5099–5107

    Article  PubMed  CAS  Google Scholar 

  • Mitchell AP, Bowdish KS (1992) Selection for early meiotic mutants in yeast. Genetics 131: 65–72

    PubMed  CAS  Google Scholar 

  • Mizzen CA, Allis CD (1998) Linking histone acetylation to transcriptional regulation. Cell Molec Life Sci 54: 6–20

    Article  PubMed  CAS  Google Scholar 

  • Mukai Y, Matsuo E, Roth SY, Harashima S (1999) Conservation of histone binding and transcriptional repressor functions in a Schiaosaccharomyces pombe Tuplp homolog. Mol Cell Biol 19: 8461–8468

    PubMed  CAS  Google Scholar 

  • Muldrow TA, Campbell AM, Weil PA, Auble DT (1999) MOTI can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites. Mol Cell Biol 19: 2835–2845

    PubMed  CAS  Google Scholar 

  • Myer VE, Young RA (1998) RNA polymerase II holoenzymes and subcomplexes. J Biol Chem 273: 27757–27760

    Article  PubMed  CAS  Google Scholar 

  • Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3 A, and histone deacetylase. Cell 89: 373–380

    Article  PubMed  CAS  Google Scholar 

  • Norris D, Dunn B, Osley MA (1988) The effect of histone gene deletions on chromatin structure in Saccharomyces cerevisiae. Science 242: 759–761

    Article  PubMed  CAS  Google Scholar 

  • Oberholzer U, Collart MA (1998) Characterization of NOT5 that encodes a new component of the Not protein complex. Gene 207: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Orphanides G, Lagrange T, Reinberg D (1996) The general transcription factors of RNA polymerase II. Genes Dev 10: 2657–2683

    Article  PubMed  CAS  Google Scholar 

  • Osley MA, Hereford LM (1981) Yeast histone genes show dosage compensation. Cell 24: 377–384

    Article  PubMed  CAS  Google Scholar 

  • Osley MA, Lycan D (1987) Trans-acting regulatory mutations that alter transcription of Saccharomyces cerevisiae histone genes. Mol Cell Biol 7: 4204–4210

    PubMed  CAS  Google Scholar 

  • Palaparti A, Baratz A, Stifani S (1997) The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3. J Biol Chem 272: 26604–26610

    Article  PubMed  CAS  Google Scholar 

  • Pazin MJ, Kadonaga JT (1997) What’s up and down with histone deacetylation and transcription? Cell 89: 325–328

    Article  PubMed  CAS  Google Scholar 

  • Pennetta G, Pauli D (1998) The Drosophila Sin3 gene encodes a widely distributed transcription factor essential for embryonic viability. Dev Genes Evol 208: 531–536

    Article  PubMed  CAS  Google Scholar 

  • Pikaart MJ, Recillas-Targa F, Felsenfeld G (1998) Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev 12: 2852–2862

    Article  PubMed  CAS  Google Scholar 

  • Poon D, Campbell AM, Bai Y, Weil PA (1994) Yeast Tafl70 is encoded by MOTI and exists in a TBP-TAF complex distinct from TFIID. J Biol Chem 269: 23135–23140

    PubMed  CAS  Google Scholar 

  • Prelich G (1997) Saccharomyces cerevisiae BURG encodes a DRAP I/NC2a homolog that has both positive and negative roles in transcription in vivo. Mol Cell Biol 17: 2057–2065

    PubMed  CAS  Google Scholar 

  • Prelich G, Winston F (1993) Mutations that suppress the deletion of an upstream activating sequence in yeast: involvement of a protein kinase and histone H3 in repressing transcription in vivo. Genetics 135: 665–676

    PubMed  CAS  Google Scholar 

  • Redd MJ, Arnaud MB, Johnson AD (1997) A complex composed of Tupl and Ssn6 represses transcription in vitro. J Biol Chem 272: 11193–11197

    Article  PubMed  CAS  Google Scholar 

  • Reece RJ, Platt A (1997) Signaling activation and repression of RNA polymerase II transcription in yeast. Bioessays 19: 1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Renauld H, Aparicio OM, Zierath PD, Billington BL, Chhablani SK, Gottschling DE (1993) Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev 7: 1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Ridsdale JA, Hendzel MJ, Delcuve GP, Davie JR (1990) Histone acetylation alters the capacity of the HI histones to condense transcriptionally active/competent chromatin. J Biol Chem 265: 5150–5156

    PubMed  CAS  Google Scholar 

  • Roeder RG (1998) Role of general and gene-specific cofactors in the regulation of eukaryotic transcription. Cold Spring Harbor Symp Quant Biol 63: 201–218

    Article  PubMed  CAS  Google Scholar 

  • Roth SY (1995) Chromatin-mediated transcriptional repression in yeast. Curr Opin Genet Devel 5: 168–173

    Article  CAS  Google Scholar 

  • Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, Grunstein M (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci USA 93: 14503–14508

    Article  PubMed  CAS  Google Scholar 

  • Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392: 831–835

    Article  PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Mizzen CA, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, Allis CD (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285: 886–891

    Article  PubMed  CAS  Google Scholar 

  • Sherman JM, Pillus L (1997) An uncertain silence. Trends Genet 13: 308–313

    Article  PubMed  CAS  Google Scholar 

  • Sherwood PW, Tsang SV, Osley MA (1993) Characterization of HIRI and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 13: 28–38

    PubMed  CAS  Google Scholar 

  • Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11: 241–254

    Article  PubMed  CAS  Google Scholar 

  • Smith JS, Brachmann CB, Pillus L, Boeke JD (1998) Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149: 1205–1219

    PubMed  CAS  Google Scholar 

  • Smith JS, Caputo E, Boeke JD (1999) A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell Biol 19: 3184–3197

    PubMed  CAS  Google Scholar 

  • Smith RL, Redd MJ, Johnson AD (1995) The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2. Genes Dev 9: 2903–2910

    Article  PubMed  CAS  Google Scholar 

  • Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB (1996) Crystal structure of a G-protein beta gamma dimer at 2.IA resolution. Nature 379: 369–374

    Article  PubMed  CAS  Google Scholar 

  • Spector MS, Raff A, DeSilva H, Lee K, Osley MA (1997) Hirlp and Hir2p function as transcriptional corepressors to regulate histone gene transcription in the Saccharomyces cerevisiae cell cycle. Mol Cell Biol 17: 545–552

    PubMed  CAS  Google Scholar 

  • Stifani S, Blaumueller CM, Redehead NJ, Hill RE, Artavanis-Tsakonas S (1992) Human homologs of a Drosophila Enhancer of Split gene product define a novel family of nuclear proteins. Nature Genet 2: 119–127

    Article  PubMed  CAS  Google Scholar 

  • Stillman DJ, Dorland S, Yu Y (1994) Epistasis analysis of suppressor mutations that allow HO expression in the absence of the yeast SW15 transcriptional activator. Genetics 136: 781–788

    PubMed  CAS  Google Scholar 

  • Strahl BD, Ohba R, Cook RG, Allis CD (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymeno. Proc Natl Acad Sci USA 96: 14967–14972

    Article  PubMed  CAS  Google Scholar 

  • Strahl-Bolsinger S, Hecht A, Luo K, Grunstein M (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11: 83–93

    Article  PubMed  CAS  Google Scholar 

  • Strich R, Surosky RT, Steber C. Dubois E. Messenguy F, Esposito RE (1994) UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev 8: 796–810

    Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12: 599–6606

    Article  PubMed  CAS  Google Scholar 

  • Swanson MS, Carlson M, Winston F (1990) SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol Cell Biol 10: 4935–4941

    PubMed  CAS  Google Scholar 

  • Swanson MS, Winston F (1992) SPT4, SPIS and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132: 325–336

    Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408–411

    Article  PubMed  CAS  Google Scholar 

  • Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC (1999) The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSKI as a potential histone H3/HMG-14 kinase. Embo J 18: 4779 93

    Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by SSN6-TUPI is directed by MIDI, a repressor/activator protein. Proc Natl Acad Sci USA 92: 3132–3136

    Article  PubMed  CAS  Google Scholar 

  • Turner BM (1991) Histone acetylation and control of gene expression. J Cell Sci 99: 13–20

    PubMed  CAS  Google Scholar 

  • Tzamarias D, Struhl K (1994) Functional dissection of the yeast Cyc8-Tupl transcriptional co-repressor complex. Nature 369: 758–761

    Article  PubMed  CAS  Google Scholar 

  • Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tupl corepressor complex to differentially regulated promoters. Genes Dev 9: 821–831

    Article  PubMed  CAS  Google Scholar 

  • van der Voorn L, Ploegh HL (1992) The WD-40 repeat. FEBS Lett 307: 131–134

    Article  PubMed  Google Scholar 

  • Varanasi US, Klis M, Mikesell PB, Trumbly RJ (1996) The Cyc8 (Ssn6)-Tupl corepressor complex is composed of one Cyc8 and four TupI subunits. Mol Cell Biol 16: 6707–6714

    PubMed  CAS  Google Scholar 

  • Verdel A, Khochbin S (1999) Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. J Biol Chem 274: 2440–2445

    Article  PubMed  CAS  Google Scholar 

  • Vidal M, Buckley AM, Hilger F, Gaber RF (1990) Direct selection for mutants with increased K transport in Saccharomyces cerevisiae. Genetics 125: 313–320

    PubMed  CAS  Google Scholar 

  • Vidal M, Gaber RF (1991) RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol 11: 6317–6327

    Google Scholar 

  • Vidal M, Strich R, Esposito RE, Gaber RF (1991) RPDI (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11: 6306–6316

    PubMed  CAS  Google Scholar 

  • Wade PA, Pruss D, Wolffe AP (1997) Histone acetylation: chromatin in action. Trends Biochem Sei 22: 128–132

    Article  CAS  Google Scholar 

  • Wahi M, Johnson AD (1995) Identification of genes required for alpha 2 repression in Saccharomyces cerevisiae. Genetics 140: 79–90

    PubMed  CAS  Google Scholar 

  • Wahi M, Komachi K, Johnson AD (1998) Gene regulation by the yeast Ssn6-Tuplp corepressor. Cold Spring Harbor Symp Quant Biol 63: 447–457

    Article  PubMed  CAS  Google Scholar 

  • Wang AH, Bertos NR, Vezmar M, Pelletier N, Crosato M, Heng HH, Th’ng J, Han J, Yang XI (1999) HDAC4, a human histone deacetylase related to yeast HDAI, is a transcriptional corepressor. Mol Cell Biol 19: 7816–7827

    PubMed  CAS  Google Scholar 

  • Wang H, Stillman DJ (1990) In vitro regulation of a S/N3-dependent DNA-binding activity by stimulatory and inhibitory factors. Proc Natl Acad Sci USA 87: 9761–9765

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Stillman DJ (1993) Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol Cell Biol 13: 1805–1814

    PubMed  CAS  Google Scholar 

  • Williams FE, Trumbly RJ (1990) Characterization of TUPI, a mediator of glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 10: 6500–6511

    PubMed  CAS  Google Scholar 

  • Winston F, Carlson M (1992) Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 8: 387–391

    PubMed  CAS  Google Scholar 

  • Winston F, Chaleff DT, Valent B, Fink GR (1984) Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107: 179–197

    PubMed  CAS  Google Scholar 

  • Wong CW, Privalsky ML (1998) Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. J Biol Chem 273: 27695–27702

    Article  PubMed  CAS  Google Scholar 

  • Wright JH, Gottschling DE, Zakian VA (1992) Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev 6: 197–210

    Google Scholar 

  • Wyrick JJ, Holstege FCP, Jennings EG, Causton HC, Shore D, Grunstein M, Lander ES, Young RA (1999) Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402: 418–421

    Article  PubMed  CAS  Google Scholar 

  • Yang WM, Inouye C, Zeng Y, Bearss D, Seto E (1996) Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 93: 12845–12850

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sun ZW, Iratni R, Erdjument-Bromage H, Tempst P, Hampsey M, Reinberg D (1998) SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol Cell 1: 1021–1031

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bone, J.R., Roth, S.Y. (2001). Corepressor Proteins and Control of Transcription in Yeast. In: Privalsky, M.L. (eds) Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression. Current Topics in Microbiology and Immunology, vol 254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10595-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10595-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08709-7

  • Online ISBN: 978-3-662-10595-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics