Advertisement

Microscopic Modeling of Synchronized Traffic

  • W. Knospe
  • L. Santen
  • A. Schadschneider
  • M. Schreckenberg
Conference paper

Abstract

Based on a recently proposed cellular automaton model for traffic flow essential properties of synchronized traffic like the synchronization of the lanes, the pinning of a synchronized region at an onramp and the propagation of a wide jam through synchronized traffic are analyzed. The used model is able to reproduce the three phases (free flow, synchronized, and stop-and-go) observed in real traffic even on a single-lane road and shows a good agreement with detailed empirical single-vehicle data in all phases.

Keywords

Traffic State Free Flow Granular Flow Cellular Automaton Model Lane Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.S. Kerner, Networks and Spatial Economics 1, 35 (2001).CrossRefGoogle Scholar
  2. 2.
    L. Neubert, L. Santen, A. Schadschneider, and M. Schreckenberg, Phys. Rev. E 60, 6480 (1999).CrossRefGoogle Scholar
  3. 3.
    B.S. Kerner, Phys. Rev. Lett. 81, 3797 (1998).MATHCrossRefGoogle Scholar
  4. 4.
    B.S. Kerner, Phys. Rev. E 53, R4275 (1996).CrossRefGoogle Scholar
  5. 5.
    M. Koshi, M. Iwasaki, and I. Ohkura, in: Proceedings of the 8th International Symposium on Transportation and Traffic Theory, V.F. Hurdle, E. Hauer, and G.N. Stewart, (Eds.), p. 403 ( University of Toronto Press, Toronto, Ontario, 1983 ).Google Scholar
  6. 6.
    B. Tilch and D. Helbing, in: Traffic and Granular Flow ‘89, D. Helbing, H.J. Herrmann, M. Schreckenberg, and D.E. Wolf, (Eds.), p. 333 ( Springer, Heidelberg, 2000 ).CrossRefGoogle Scholar
  7. 7.
    W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg, in: Traffic and Granular Flow ‘89, D. Helbing, H.J. Herrmann, M. Schreckenberg, and D.E. Wolf, (Eds.), p. 431 ( Springer, Heidelberg, 2000 ).CrossRefGoogle Scholar
  8. 8.
    W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg, J. Phys. A 33, L477 (2000).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    K. Nagel and M. Schreckenberg, J. Phys. I (France) 2, 2221 (1992).CrossRefGoogle Scholar
  10. 10.
    B.S. Kerner, Physics World, 8, 25 (1999).Google Scholar
  11. 11.
    W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg, Phys. Rev. E, (2001), in press.Google Scholar
  12. 12.
    O. Kaumann, K. Froese, R. Chrobok, J. Wahle, L. Neubert, and M. Schreckenberg, in: Traffic and Granular Flow ‘89, D. Helbing, H.J. Herrmann, M. Schreckenberg, and D.E. Wolf, (Eds.), pp. 351–356 (Springer, 2000 ).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • W. Knospe
    • 1
  • L. Santen
    • 2
  • A. Schadschneider
    • 3
  • M. Schreckenberg
    • 1
  1. 1.Physics of Transport and TrafficGerhard-Mercator-University DuisburgDuisburgGermany
  2. 2.Theoretical PhysicsSaarland UniversitySaarbrückenGermany
  3. 3.Institute for Theoretical PhysicsUniversity of CologneCologneGermany

Personalised recommendations