Jamming Bacterial Traffic: Bioconvection

  • I. M. Jánosi
  • A. Czirók
  • D. Silhavy
  • A. Holczinger
Conference paper


Bioconvection is a fascinating pattern forming phenomenon driven by the swimming activity of microbes. There is a common belief that bioconvection has a positive effect on the whole microbial population by aerating deep layers in the suspension. In order to detect such a biological benefit, we performed experiments with several strains of Bacillus subtilis and Bacillus licheniformis of different swimming capabilities. Bioconvection is a robust phenomenon, we observed it at numerous strains in different growth phases. Nevertheless data evaluation has not revealed a similarly robust positive effect on population growth.


Bacillus Subtilis Bacillus Licheniformis Swimming Activity Swimming Capability Biological Benefit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Platt, Science 133, 1766 (1961).CrossRefGoogle Scholar
  2. 2.
    M.S. Plesset and H. Winet, Nature 248, 441 (1974).CrossRefGoogle Scholar
  3. 3.
    J.O. Kessler, Contemp. Phys. 26, 147 (1985).CrossRefGoogle Scholar
  4. 4.
    T.J. Pedley and J.O. Kessler, Sci. Progress 76, 105 (1992).Google Scholar
  5. 5.
    J.O. Kessler and M.F. Wojciechowski, Collective behavior and dynamics of swimming bacteria, in: Bacteria as Multicellular Organisms, J.A. Shapir and M. Dworkin, (Eds.), pp. 417–450 (Oxford University Press, New York 1997 ).Google Scholar
  6. 6.
    J.O Kessler, G.D. Burnett, and K.E. Remick, Mutual Dynamics of Swimming Microorganisms and Their Fluid Habitat, in: Nonlinear Science at the Dawn of the 21st Century, P.L. Christensen, M.P. Soerensen, and A.C. Scott, (Eds.), pp. 409–426 ( Springer, Heidelberg 2000 ).Google Scholar
  7. 7.
    M.A. Bees and N.A. Hill, J. Exp. Biol. 200, 1515 (1997).Google Scholar
  8. 8.
    I.M. Jânosi, J.O. Kessler, and V.K. Horvath, Phys. Rev. E 58, 4793 (1998).Google Scholar
  9. 9.
    A. Czirók, I.M. Jânosi, and J.O. Kessler, J. Exp. Biol. 203, 3345 (2000).Google Scholar
  10. 10.
    J.S. Turner, The Extended Organism: The Physiology of Animal-Built Structures, Chapter 4, ( Harvard University Press, Cambridge, 2000 ).Google Scholar
  11. 11.
    M. LaBarbera, Science 289, 1882 (2000).CrossRefGoogle Scholar
  12. 12.
    L.S. Wong et al., J. Bacteriol. 177, 3985 (1995).Google Scholar
  13. 13.
    J.O. Kessler and N.A. Hill, Microbial Consumption Patterns, in: Spatio-Temporal Patterns, P.E. Cladis and P. Palffy-Muhoray, (Eds.), ( Addison-Wesley, New York 1995 ).Google Scholar
  14. 14.
    G.M. Dunny and B.A.B. Leonard, Annu. Rev. Microbiol. 51, 527 (1997); S.I. Aizawa, C.S. Harwood, and R.J. Kadner, J. Bacteriol. 182, 1459 (2000).CrossRefGoogle Scholar
  15. 15.
    M. Lebert and D.P. Häder, Nature 379, 590 (1996).CrossRefGoogle Scholar
  16. 16.
    M.A. Bees, Non-Linear Pattern Generation by Swimming Micro-Organisms. PhD Thesis, University of Leeds, Leeds (1998).Google Scholar
  17. 17.
    W.H. Press, S.A. Teukoisky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes, 2nd ed., ( Cambridge University Press, Cambridge 1992 ).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • I. M. Jánosi
    • 1
  • A. Czirók
    • 2
  • D. Silhavy
    • 3
  • A. Holczinger
    • 4
  1. 1.Department of Physics of Complex SystemsEötvös UniversityHungary
  2. 2.Department of Biological PhysicsEötvös UniversityBudapestHungary
  3. 3.Agricultural Biotechnology CenterGödöllőHungary
  4. 4.Department of Biotechnology and Molecular GeneticsSzent István UniversityGödöllőHungary

Personalised recommendations