Advertisement

Bionics-Inspired Cellular Automaton Model for Pedestrian Dynamics

  • A. Schadschneider
Conference paper

Abstract

We present a 2-dimensional cellular automaton model for the simulation of pedestrian dynamics. Inspired by the principles of chemotaxis the interactions between the pedestrians are mediated by a so-called floor field. This field has a similar effect as the chemical trace created e.g. by ants to guide other individuals to food places. In our case the floor field modifies the transition rates to neighbouring cells. It has its own dynamics (diffusion and decay) and can be changed by the motion of the pedestrians. This means that in our model pedestrians follow a virtual rather than a chemical trace as in the case of chemotaxis. The approach is extremely efficient and makes faster-than-real-time simulations of large crowds possible. Already the inclusion of only nearest-neighbour interactions allows to reproduce many of the collective effects and self-organization phenomena (lane formation, flow oscillations at doors etc.) encountered in pedestrian dynamics.

Keywords

Cellular Automaton Cellular Automaton Cellular Automaton Model Chemical Trace Pedestrian Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Chowdhury, L. Santen and A. Schadschneider, Phys. Rep. 329, 199 (2000).MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Helbing, cond-mat/0012229.Google Scholar
  3. 3.
    D. Helbing, I. Farkas, P. Molnar and T. Vicsek, in: M. Schreckenberg and S.D. Sharma (Eds.), “Pedestrian and Evacuation Dynamics” (Springer, 2001 ).Google Scholar
  4. 4.
    D. Helbing and P. Molnar, Phys. Rev. E51, 4282 (1995).Google Scholar
  5. 5.
    D. Helbing, I. Farkas and T. Vicsek, Phys. Rev. Lett. 84, 1240 (2000).CrossRefGoogle Scholar
  6. 6.
    D. Helbing, I. Farkas and T. Vicsek, Nature 407, 487 (2000).CrossRefGoogle Scholar
  7. 7.
    D. Helbing: these proceedings.Google Scholar
  8. 8.
    A. Kirchner and A. Schadschneider, Cellular automaton simulations of pedestrian dynamics and evacuation processes,these proceedings.Google Scholar
  9. 9.
    C. Burstedde, A. Kirchner, K. Klauck, A. Schadschneider and J. Zittartz, in: M. Schreckenberg and S.D. Sharma (Eds.), “Pedestrian and Evacuation Dynamics” (Springer, 2001 ).Google Scholar
  10. 10.
    N. Ohi, M. Ikai and K. Nishinari, these proceedings.Google Scholar
  11. 11.
    A. Kirchner and A. Schadschneider, in preparation.Google Scholar
  12. 12.
    D. Helbing, F. Schweitzer, J. Keltsch and P. Molnar, Phys. Rev. E56, 2527 (1997).Google Scholar
  13. 13.
    D. Helbing, J. Keltsch and P. Molnar, Nature 388, 47 (1997).CrossRefGoogle Scholar
  14. 14.
    M. Fukui and Y. Ishibashi, J. Phys. Soc. Jpn. 68, 2861, 3738 (1999).CrossRefGoogle Scholar
  15. 15.
    M. Muramatsu, T. Irie and T. Nagatani, Physica A267, 487 (1999).CrossRefGoogle Scholar
  16. 16.
    M. Muramatsu and T. Nagatani, Physica A275, 281 (2000); A286, 377 (2000).MATHGoogle Scholar
  17. 17.
    H. Klüpfel, T. Meyer-König, J. Wahle and M. Schreckenberg, in: Theory and Practical Issues on Cellular Automata,S. Bandini and T. Worsch (Eds.), Springer (2000); see also these proceedings.Google Scholar
  18. 18.
    O. Biham, A.A. Middleton and D. Levine, Phys. Rev. A46, R6124 (1992).CrossRefGoogle Scholar
  19. 19.
    P.G. Gipps and B. Marksjös, Math. and Comp. in Simulation 27, 95 (1985).Google Scholar
  20. 20.
    K. Bolay, Diploma Thesis, Stuttgart University (1998).Google Scholar
  21. 21.
    C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Physica A295, 507 (2001).MATHCrossRefGoogle Scholar
  22. 22.
    A. Schadschneider, in: M. Schreckenberg and S.D. Sharma (Eds.), “Pedestrian and Evacuation Dynamics” (Springer, 2001 ).Google Scholar
  23. 23.
    E. Ben-Jacob, Contemp. Phys. 38, 205 (1997).CrossRefGoogle Scholar
  24. 24.
    L.F. Henderson, Nature 229, 381 (1971).CrossRefGoogle Scholar
  25. 25.
    C. Burstedde, Diploma Thesis, Universität zu Köln (2001); available for download at http://www.burstedde.de/carsten/diplom.html.
  26. 26.
    U. Weidmann, Transporttechnik der Fussgänger, Schriftenreihe des IVT 80, ETH Zürich (1992).Google Scholar
  27. 27.

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Schadschneider
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologneGermany

Personalised recommendations