Localized Defects in a Cellular Automaton Model for Traffic Flow with Phase Separation

  • A. Pottmeier
  • R. Barlovic
  • W. Knospe
  • A. Schadschneider
  • M. Schreckenberg
Conference paper


The impact of a localized defect in a cellular automaton model for traffic flow which exhibits metastable states and phase separation is studied. The defect is implemented by locally increasing the deceleration probability. Depending on the magnitude three phases can be identified in the system. One of them shows the characteristics of stop-and-go traffic which can not be found in the model without lattice defect. From a physical point of view the model describes the competition between two mechanisms of phase separation.


Cellular Automaton Traffic Flow Metastable State Cellular Automaton Local Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.F. Daganzo, M.J. Cassidy, and R.L. Bertini, Tramp. Res. A 33, 365 (1999).Google Scholar
  2. 2.
    B.S. Kerner, Phys. Rev. Lett. 81, 3797 (1998).MATHCrossRefGoogle Scholar
  3. 3.
    D. Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. 82, 4360 (1999).CrossRefGoogle Scholar
  4. 4.
    L. Neubert, L. Santen, A. Schadschneider, and M. Schreckenberg, Phys. Rev. E 60, 6480 (1999).CrossRefGoogle Scholar
  5. 5.
    H.Y. Lee, H.-W. Lee, and D. Kim, Phy. Rev. Lett. 81, 1130 (1998).CrossRefGoogle Scholar
  6. 6.
    V. Popkov, L. Santen, A. Schadschneider, and G. Schütz, J. Phys. A 34, L45 (2001).MATHCrossRefGoogle Scholar
  7. 7.
    D. Helbing, H.J. Herrmann, M. Schreckenberg, and D.E. Wolf (eds.), Traffic and Granular Flow `99 (Springer, 2000 ).Google Scholar
  8. 8.
    D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000).MathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Nagel and M. Schreckenberg, J. Physique I 2, 2221 (1992).Google Scholar
  10. 10.
    R. Barlovic, L. Santen, A. Schadschneider, and M. Schreckenberg, Eur. Phys. J. B 5, 793 (1998)CrossRefGoogle Scholar
  11. 11.
    A. Pottmeier, R. Barlovic, W. Knospe, A. Schadschneider, and M. Schreckenberg, Physica A (in press).Google Scholar
  12. 12.
    R. Barlovic, A. Schadschneider, and M. Schreckenberg, Physica A 294, 525 (2001).MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Pottmeier
    • 1
  • R. Barlovic
    • 1
  • W. Knospe
    • 1
  • A. Schadschneider
    • 2
  • M. Schreckenberg
    • 1
  1. 1.Physics of Transport and TrafficGerhard-Mercator-University DuisburgDuisburgGermany
  2. 2.Institute for Theoretical PhysicsUniversity of CologneCologneGermany

Personalised recommendations