Skip to main content

Cell Plate Formation: Knowledge from Studies Using Tobacco BY-2 Cells

  • Chapter
Tobacco BY-2 Cells

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 53))

Abstract

In higher plants, cytokinesis is achieved by cell plate formation, which is responsible for the assembly of the new plasma membrane and new wall matrix. In somatic cell types, this process initiates with the generation of an immature cell plate between separating groups of anaphase chromosomes, and proceeds by centrifugal growth of the cell plate. This cytokinetic process contrasts with those in animal, fungal, and most alga cells, where cleavage of parental cytoplasm starts from the cell cortex with inward furrowing of the plasma membrane (Pickett-Heaps 1975; Gunning 1982; Glotzer 2001; Guertin et al. 2002). The outward cleavage characterizing higher plant cytokinesis ensures partitioning of daughter nuclei irrespective of parental cell volume and selected division plane, and thus is thought to contribute to the ability of higher plants to flexibly set the plane of cell division, and thereby generate variable cell arrangements. Much information about the structure and function of the apparatus responsible for this higher plant-specific cytokinesis, namely the phragmoplast, has been accumulated through studies using stamen hair cells of Tradescantia and endosperm cells of Haemanthus (Gunning 1982; Bajer et al. 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi T, Izumi K, Nagano E, Enomoto M, Mizuno K, Shibaoka H (1988) Effects of propyzamide on tobacco cell microtubules in vivo and in vitro. Plant Cell Physiol 29: 1053–1062

    CAS  Google Scholar 

  • Asada T, Shibaoka H (1994) Isolation of polypeptides with microtubule-translocating activity from phragmoplasts of tobacco BY-2 cells. J Cell Sci 107: 2249–2257

    PubMed  CAS  Google Scholar 

  • Asada T, Sonobe S, Shibaoka H (1991) Microtubule translocation in the cytokinetic apparatus of cultured tobacco cells. Nature 350: 238–241

    Article  CAS  Google Scholar 

  • Asada T, Kuriyama R, Shibaoka H (1997) TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci 110: 179–189

    PubMed  CAS  Google Scholar 

  • Assaad FF, Huet Y, Mayer U, Jürgens G (2001) The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J Cell Biol 152: 531–543

    Article  PubMed  CAS  Google Scholar 

  • Bajer AS, Vantard M, Mole-Bajer J (1987) Multiple mitotic transports expressed by chromosome and particle movement. Fortschr Zool 34: 171–186

    Google Scholar 

  • Bogre L, Calderini O, Binarova P, Mattauch M, Till S, Kiegerl S, Jonak C, Pollaschek C, Barker P, Huskisson NS, Hirt H, Heberle-Bors E (1999) A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11: 101–113

    PubMed  CAS  Google Scholar 

  • Bonsignore CL, Hepler PK (1985) Caffeine inhibition of cytokinesis: dynamics of cell plate formation-deformation in vivo. Protoplasma 129: 28–35

    Article  CAS  Google Scholar 

  • Bowser J, Reddy AS (1997) Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J 12: 1429–1437

    Article  PubMed  CAS  Google Scholar 

  • Calderini O, Bogre L, Vicente O, Binarova P, Heberle-Bors E, Wilson C (1998) A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J Cell Sci 111: 3091–3100

    PubMed  CAS  Google Scholar 

  • Euteneuer U, McIntosh JR (1980) Polarity of midbody and phragmoplast microtubules. J Cell Biol 87: 509–515

    Article  PubMed  CAS  Google Scholar 

  • Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17: 351–386

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Verma DP (1997) Dynamics of phragmoplastin in living cells during cell plate formation and uncoupling of cell elongation from the plane of cell division. Plant Cell 9: 157–69

    PubMed  CAS  Google Scholar 

  • Guertin DA, Trautmann S, McCollum D (2002) Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 66: 155–178

    Article  PubMed  CAS  Google Scholar 

  • Gunning BES (1982) The cytokinetic apparatus: its development and spatial regulation. In: Lloyd CW (ed) The cytoskeleton in plant growth and development. Academic Press, London, pp 229–292

    Google Scholar 

  • Hardham AR, Gunning BES (1980) Some effects of colchicine on microtubules and cell division in roots of Azolla pinnata. Protoplasma 102: 31–51

    Article  CAS  Google Scholar 

  • Heese M, Mayer U, Jürgens G (1998) Cytokinesis in flowering plants: cellular process and developmental integration. Curr Opin Plant Biol 1: 486–491

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK (1982) Endoplasmic reticulum in formation of the cell plate and plasmodesmata. Protoplasma 111: 121–133

    Article  Google Scholar 

  • Hepler PK, Bonsignore CL (1990) Caffeine inhibition of cytokinesis: Ultrastructure of cell plate formation-degradation. Protoplasma 157: 182–192

    Google Scholar 

  • Hepler PK, Hush JM (1996) Behavior of microtubules in living plant cells. Plant Physiol 112:455– 461

    Google Scholar 

  • Hong Z, Delauney AJ, Verma DP (2001a) A cell plate-specific callose synthase and its interaction with phragmoplastin. Plant Cell 13: 755–768

    PubMed  CAS  Google Scholar 

  • Hong Z, Zhang Z, Olson JM, Verma DP (2001b) A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell 13: 769–779

    PubMed  CAS  Google Scholar 

  • Hush JM, Wadsworth P, Callaham DA, Hepler PK (1994) Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J Cell Sci 107:775– 784

    Google Scholar 

  • Jürgens M, Hepler LH, Rivers BA, Hepler PK (1994) BAPTA-calcium buffers modulate cell plate formation in stamen hairs of Tradescantia: evidence for calcium gradients. Protoplasma 183: 86–99

    Article  Google Scholar 

  • Kakimoto T, Shibaoka H (1988) Cytoskeletal ultrastructure of phragmoplast-nuclei complexes isolated from cultured tobacco cells. Protoplasma (Suppl) 2: 95–103

    Article  Google Scholar 

  • Kakimoto T, Shibaoka H (1992) Synthesis of polysaccharides in phragmoplasts isolated from tobacco BY-2 cells. Plant Cell Physiol 33: 353–361

    CAS  Google Scholar 

  • Koshland DE, Mitchison TJ, Kirschner MW (1988) Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331: 499–504

    Article  PubMed  CAS  Google Scholar 

  • Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S (200 1) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42: 723–732

    Google Scholar 

  • Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jürgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Cell Biol 139: 1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Lee YR, Giang HM, Liu B (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13: 2427–2439

    PubMed  CAS  Google Scholar 

  • Liu B, Lee YRJ (2001) Kinesin-related proteins in plant cytokinesis. J Plant Growth Reg 20:141–150 Liu B, Cyr RJ, Palevitz BA (1996) A kinesin-like protein, KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8: 119–132

    Google Scholar 

  • Mitchison TJ (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109: 637–652

    Article  PubMed  CAS  Google Scholar 

  • Moore PJ, Staehelin LA (1988) Immunogold localization of the cell-wall-matrix polysaccharides rhamnogalacturonan-I and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L; implication for secretory pathways. Planta 174: 433–445

    Article  CAS  Google Scholar 

  • Nacry P, Mayer U, Jürgens G (2000) Genetic dissection of cytokinesis. Plant Mol Biol 43:719–733 Nagata T, Okada K, Takebe I (1982) Mitotic protoplasts and their infection with tobacco mosaic virus RNA encapsulated in liposomes. Plant Cell Rep 1: 250–252

    Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLâ cell in the cell biology of higher plants. Int Rev Cytol 132: 1–30

    Article  CAS  Google Scholar 

  • Nishihama R, Machida Y (2001) Expansion of the phragmoplast during plant cytokinesis: a MAPK pathway may MAP it out. Curr Opin Plant Biol 4: 507–512

    Article  PubMed  CAS  Google Scholar 

  • Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogenactivated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev 15: 352–363

    Article  PubMed  CAS  Google Scholar 

  • Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, Yamazaki Y, Machida Y (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109: 87–99

    Article  PubMed  CAS  Google Scholar 

  • Northcote DH, Davey R, Lay J (1989) Use of antisera to localize callose, xylan and arabinogalactan

    Google Scholar 

  • in the cell-plate, primary and secondary walls of plant cells. Planta 178:353–366

    Google Scholar 

  • Otegui M, Staehelin LA (2000) Cytokinesis in flowering plants: more than one way to divide a

    Google Scholar 

  • cell. Curr Opin Plant Biol 3:493–502

    Google Scholar 

  • Palevitz BA, Hepler PK (1974) The control of the plane of division during stomatal differentiation in Allium. Chromosoma 46: 327–341

    Article  CAS  Google Scholar 

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 13: 1873–1877

    Article  Google Scholar 

  • Picket-Heaps JD (1975) Green algae: structure, reproduction and evolution in selected genera. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Rutten TLM, Kuniman B (1993) Brefeldin A effects on tobacco pollen tubes. Eur J Cell Biol 61:247– 255

    Google Scholar 

  • Samuels AL, Staehelin LA (1996) Caffeine inhibits cell plate formation by disrupting membrane reorganization just after the vesicle fusion step. Protoplasma 195: 144–155

    Article  CAS  Google Scholar 

  • Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130: 1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Shibaoka H (1993) The use of tobacco BY-2 cells for studies of the plant cytoskeleton. J Plant Res (Special issue) 3: 3–15

    Google Scholar 

  • Smith LG (1999) Divide and conquer: cytokinesis in plant cells. Curr Opin Plant Biol 2:447–453 Smith LG (2002) Plant cytokinesis: motoring to the finish. Curr Biol 12: R206–R208

    Google Scholar 

  • Smirnova EA, Reddy AS, Bowser J, Bajer AS (1998) Minus end-directed kinesin-like motor

    Google Scholar 

  • protein, Kcbp, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil

    Google Scholar 

  • Cytoskeleton 41:271–280

    Google Scholar 

  • Song H, Golovkin M, Reddy AS, Endow SA (1997) In vitro motility of AtKCBP, a calmodulinbinding kinesin protein of Arabidopsis. Proc Natl Acad Sci USA 94: 322–327

    Article  PubMed  CAS  Google Scholar 

  • Sonobe S, Nakayama N, Shimmen T, Sone S (2000) Intracellular distribution of subcellular organelles revealed by antibody against xyloglucan during cell cycle in tobacco BY-2 cells. Protoplasma 213: 218–227

    Article  Google Scholar 

  • Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jürgens G, Mayer U (2002) The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 12: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Valster AH, Hepler PK (1997) Caffeine inhibition of cytokinesis: effect on the phragmoplast cytoskeleton in living Tradescantia stamen hair cells. Protoplasma 196: 155–166

    Article  CAS  Google Scholar 

  • Verma DPS (2001) Cytokinesis and building of the cell plate in plants. Annu Rev Plant Phys 52: 751–784

    Article  CAS  Google Scholar 

  • Vos JW, Safadi F, Reddy AS, Hepler PK (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12: 979–990

    PubMed  CAS  Google Scholar 

  • Waizenegger I, Lukowitz W, Assaad F, Schwarz H, Jürgens G, Mayer U (2000) The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr Biol 10: 1371–1374

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara H, Shibaoka H (2000) Inhibition of cell-plate formation by brefeldin A inhibited the depolymerization of microtubules in the central region of the phragmoplast. Plant Cell Physiol 41: 300–310

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara H, Sonobe S, Shibaoka H (1992) ATP-sensitive binding to microtubules of polypeptides extracted from isolated phragmoplast of tobacco BY-2 cells. Plant Cell Physiol 33: 601–608

    CAS  Google Scholar 

  • Yasuhara H, Sonobe S, Shibaoka H (1993) Effects of taxol on the development of the cell plate and of the phragmoplast in tobacco BY-2 cells. Plant Cell Physiol 34: 21–29

    CAS  Google Scholar 

  • Yasuhara H, Sonobe S, Shobaoka H (1995) Effects of brefeldin A on the formation of the cell plate in tobacco BY-2 cells. Eur J Cell Biol 66: 274–281

    PubMed  CAS  Google Scholar 

  • Yasuhara H, Muraoka M, Shogaki H, Mori H, Sonobe S (2002) TMBP200, a microtubule bundling polypeptide isolated from telophase BY-2 cells is a MOR1 homologue. Plant Cell Physiol 43: 595–603

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2001) Endoxyloglucan transferase is localized both in the cell plate and in the secretory pathway destined for the apoplast in tobacco cells. Plant Cell Physiol 42: 292–300

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Wadsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87:8820– 8824

    Google Scholar 

  • Zuo J, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH (2000) KORRIGAN, an Arabidopsis endo1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12: 1137–1152

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Asada, T., Yasuhara, H. (2004). Cell Plate Formation: Knowledge from Studies Using Tobacco BY-2 Cells. In: Nagata, T., Hasezawa, S., Inzé, D. (eds) Tobacco BY-2 Cells. Biotechnology in Agriculture and Forestry, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10572-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10572-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07305-2

  • Online ISBN: 978-3-662-10572-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics