Skip to main content

Tobacco BY-2 Cells as an Ideal Material for Biochemical Studies of Plant Cytoskeletal Proteins

  • Chapter
Book cover Tobacco BY-2 Cells

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 53))

Abstract

Microtubules (MTs) and actin filaments (AFs) are the major cytoskeletons in plant cells. The former functions in cellular morphogenesis and cell division, while the latter functions in intracellular transport including cytoplasmic streaming and positioning of organelles. To accomplish such functions, cytoskeletons are organized into a variety of ordered structures, and to organize such structures, a variety of regulatory proteins are thought to be involved. Therefore, identification and characterization of all regulatory proteins are necessary to understand the mechanism of cellular functions performed by cytoskeletons. For this purpose, tobacco BY-2 cells have significantly contributed to physiological and biochemical approaches (Nagata et al. 1992; Shibaoka et al. 1995; Sonobe 1996). Here, we will introduce plant cytoskeletal components including microtubule-associated proteins (MAPs) and actin binding proteins (ABPs), which have been found biochemically by our group using tobacco BY-2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asada T, Kuriyama R, Shibaoka H (1997) TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci 110: 179–189

    PubMed  CAS  Google Scholar 

  • Bokros CL, Hugdahl JD, Hanesworth VR, Murthy JV, Morejohn (1993) Characterization o f the reversible taxol-induced polymerization of plant tubulin into microtubules. Biochemistry 32: 3437–3447

    CAS  Google Scholar 

  • Burgess J, Lawrence W (1985) Studies of the recovery of tobacco methophyll protoplasts from an evacuolation treatment. Protoplasma 126: 140–146

    Article  Google Scholar 

  • Chan J, Rutten T, Lloyd C (1996) Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120 kDa map decorates all four microtubule arrays and the nucleus. Plant J 10: 251–259

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Jensen CG, Jensen LCW, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubuleassociated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA 96: 14931–14936

    Article  PubMed  CAS  Google Scholar 

  • Cyr RJ (1994) Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol 10: 153–180

    Article  PubMed  CAS  Google Scholar 

  • Cyr RJ, Palevitz BA (1989) Microtubule-binding proteins from carrot. Planta 177: 245–260

    Article  CAS  Google Scholar 

  • Fakhrai H, Haq H, Evans PK (1988) Enucleation of protoplasts derived from suspension cultures of winged bean and from a crown gall cell line of Parthenocissus tricuspidata. Biol Plant (Praha) 30: 401–408

    Google Scholar 

  • Friederich E, Pringault E, Arpin M, Louvard D (1990) From the structure to the function of villin, an actin-binding protein of the brush border. BioEssays 12: 403–408

    Article  PubMed  CAS  Google Scholar 

  • Giddings TH, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium sp. Planta 173: 22–30

    Article  Google Scholar 

  • Gibbon BC, Staiger CJ (2000) Profilin. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, The Netherlands, pp 45–66

    Google Scholar 

  • Hamada T, Shimmen T, Sonobe S (2002) A 200-kDa microtubule-binding protein isolated from tobacco BY-2 cells. Plant Cell Physiol 43 (Suppl): 572

    Google Scholar 

  • Hasezawa S, Nagata T (1993) Microtubule organizing centers in plant cells: localization of a 49 kDa protein that is immunologically cross-reactive to a 51 kDa protein from sea urchin centrosomes in synchronized tobacco BY-2 cells. Protoplasma 176: 64–74

    Article  CAS  Google Scholar 

  • Higashi-Fujime S, Ishikawa R, Iwasawa H, Kagami O, Kurimoto E, Kohama K, Hozumi T (1995) The fastest actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Lett 375: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Sonobe S, Murofushi H, Hasezawa S (1996) Identification of a novel 70 kDa protein in cultured tobacco cells that is immunologically related to MAP4. Cytologia 61:229– 233

    Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi I, Kaloriti D, Smertenko AP (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP- 190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50: 915–924

    Article  PubMed  CAS  Google Scholar 

  • Igarashi H, Vidali L, Yokota E, Sonobe S, Hepler PK, Shimmen T (1999) Actin filaments purified from tobacco cultured BY-2 cells can be translocated by plant myosin. Plant Cell Physiol 40: 1167–1171

    Article  Google Scholar 

  • Igarashi H, Orii H, Mori H, Shimmen T, Sonobe S (2000) Isolation of a novel 190-kDa protein from tobacco BY-2 cells: possible involvement in the interaction between actin filaments and microtubules. Plant Cell Physiol 41: 920–931

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki Y, Mikawa T, Ebashi S, Yokota E, Hosoya H, Kuroda K (1988) Preparation of tubulin from Caulerpa, a marine green alga, using casein as a protective agent against proteolytic degradation. J Biochem 104: 329–332

    PubMed  CAS  Google Scholar 

  • Jiang CJ, Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J Cell Sci 105: 891–901

    CAS  Google Scholar 

  • Jiang CJ, Sonobe S, Shibaoka H (1992) Assembly of microtubules in a cytoplasmic extract of tobacco BY-2. Plant Cell Physiol. 33: 497–501

    CAS  Google Scholar 

  • Kakimoto T, Shibaoka H (1988) Cytoskeletal ultrastructure of phragmoplast-nuclei complexes isolated from cultured tobacco cells. Protoplasma (Suppl)2: 95–103

    Google Scholar 

  • Kamiya N (1959) Protoplasmic streaming. Protoplasmatologia, VIII ( 3a ). Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Kamiya N, Kuroda K (1956) Velocity distribution of the protoplasamic streaming in Nitella cells. Bot Mag Tokyo 69: 544–554

    Google Scholar 

  • Kashiyama T, Kimura N, Mimura T, Yamamoto K (2000) Cloning and characterization of a myosin from characean alga, the fastest motor protein in the world. J Biochem 127: 1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Kinkema M, Schiefelbein J (1994) A myosin from a higher plant has structural similarities to class V myosins. J Mol Biol 239: 591–597

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita K, Habermann B, Hyman AA (2002) XMAP215: a key component of the dynamic microtubule cytoskeleton. Trends Cell Biol 12: 267–273

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Shimmen T (1988a) Mechanism of Ca2+ inhibition of cytoplasmic streaming in lily pollen tubes. J Cell Sci 91: 501–509

    Google Scholar 

  • Kohno T, Shimmen T (1988b) Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J Cell Biol 106: 1539–1543

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Okagaki T, Kohama K, Shimmen T (1991) Pollen tube extract supports the movement of actin filaments in vitro. Protoplasma 161: 75–77

    Article  Google Scholar 

  • Kohno T, Ishikawa R, Nagata T, Kohama K, Shimmen T (1992) partial purification of myosin from lily pollen tubes by monitoring with in vitro motility assay. Protoplasma 170: 77–85

    Google Scholar 

  • Kovar DR, Staiger CJ (2000) Actin depolymerizing factor. In: Staiger CJ, Balusška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, The Netherlands, pp 67–88

    Google Scholar 

  • Kumagai F, Hasezawa S, Takahashi Y, Nagata T (1995) The involvement of protein synthesis elongation factor 1a in the organization of microtubules on the perinuclear region during the cell cycle transition from M phase to G1 phase in tobacco BY-2 cells. Botanica Acta 108:467– 473

    Google Scholar 

  • Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250 Lee YRJ, Giang HM, Liu B (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13: 2427–2439

    Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A y-tubulin related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104: 1217–1228

    PubMed  CAS  Google Scholar 

  • Lloyd CW (1987) The plant cytoskeleton: the impact of fluorescence microscopy. Annu Rev Plant Physiol 38: 119–139

    Article  CAS  Google Scholar 

  • Lorz H, Paszkowski J, Dierks-Ventling C, Potrykus I (1981) Isolation and characterization of cytoplasts and miniprotoplasts derived from protoplasts of cultured cells. Physiol Plant 53: 385–391

    Article  CAS  Google Scholar 

  • Maekawa T, Ogihara S, Murofushi H, Nagai R (1990) Green algal microtubule-associated protein with a molecular weight of 90 kD which bundles microtubules. Protoplasma 158: 10–18

    Article  CAS  Google Scholar 

  • Marc J, Sharkey DE, Durso NA, Zhang M, Cyr RJ (1996) Isolation of a 90-kD microtubuleassociated protein from tobacco membranes. Plant Cell 8: 2127–2138

    PubMed  CAS  Google Scholar 

  • McCurdy DW, Staiger CJ (2000) Fimbrin. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds )

    Google Scholar 

  • Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 87–102 Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593

    Google Scholar 

  • Mineyuki Y (1999) The preprophase band of microtubules: its function as a cytokinetic apparatus in higher plants. Int Nat Rev Cytol 187: 1–49

    Article  Google Scholar 

  • Mizuno K (1985) In vitro assembly of microtubules from tubulins of several higher plants. Cell Biol Int Rep 9: 13–21

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Koyama M, Shibaoka H (1981) Isolation of plant tubulin from azuki bean epicotyls by ethyl N-phenylcarbamate-sepharose affinity chromatography. J Biochem 89: 329–332

    PubMed  CAS  Google Scholar 

  • Morejohn LC, Fosket DE (1982) Higher plant tubulin identified by self-assembly into microtubules in vitro. Nature 297: 426–428

    Article  PubMed  CAS  Google Scholar 

  • Morejohn LC, Fosket DE (1984) Taxol-induced rose microtubule polymerization in vitro and its inhibition by colchicine. J Cell Biol 99: 141–147

    Article  PubMed  CAS  Google Scholar 

  • Morimatsu M, Nakamura A, Sumiyoshi H, Sakaba N, Taniguchi H, Kohama K, Higashi-Fujime S (2000) The molecular structure of the fastest myosin from green algae, Chara. Biochem Biophys Res Comm 270: 147–152

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Okada K, Takebe I, Matsui C (1981) Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse-phase evaporation vesicles (liposomes). Mol Gen Genet 184: 161–165

    CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLâ cell in the cell biology of higher plants. Int Rev Cytol 132: 1–30

    Article  CAS  Google Scholar 

  • Nebenführ A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121: 1127–1141

    Article  PubMed  Google Scholar 

  • Nick P, Lambert A-M, Vantard M (1995) A microtubule-associated protein in maize is expressed during phytochrome-induced cell elongation. Plant J 8: 835–844

    Article  PubMed  CAS  Google Scholar 

  • Prescott DM, Myerson D, Wallace J (1972) Enucleation of mammalian cells with cytochalasin B. Exp Cell Res 71: 480–485

    Article  PubMed  CAS  Google Scholar 

  • Reichelt S, Kendrick-Jones J (2000) Myosins. In: Staiger CJ, Baluska F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, The Netherlands, pp 29–44

    Google Scholar 

  • Rock RS, Rice SE, Wells AL, Purcell TJ, Spudich JA, Sweeney HL (2001) Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci USA 98: 13655–13659

    Article  PubMed  CAS  Google Scholar 

  • Rutten T, Chan J, Lloyd CW (1997) A 60-kDa plant microtubule-associated protein promotes the growth and stabilization of neurotubules in vitro. Proc Natl Acad Sci USA 94: 4469–4474

    Article  PubMed  CAS  Google Scholar 

  • Sawano M, Shimmen T, Sonobe S (2000) Possible involvement of 65 kDa MAP in elongation growth of Azuki bean epicotyls. Plant Cell Physiol 431: 968–976

    Article  Google Scholar 

  • Seagull RW, Falconer MM, Weerdenburg CA (1987) Microfilaments: dynamic arrays in higher plant cells. J Cell Biol 104: 995–1004

    Article  PubMed  CAS  Google Scholar 

  • Shibaoka H (1991) Microtubules and the regulation of cell morphogenesis by plant hormone. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, New York, pp 159–168

    Google Scholar 

  • Shibaoka H (1993) Regulation by gibberellins of the orientation of cortical microtubules in plant cells. Aust J Plant Physiol 20: 461–470

    Article  CAS  Google Scholar 

  • Shibaoka H (1994) Plant hormone-induced changes in the orientation of cortical microtubules: alterations in the cross-linking between microtubules and the plasma membrane. Annu Rev Plant Physiol Plant Mol Biol 45: 527–544

    Article  CAS  Google Scholar 

  • Shibaoka H, Asada T, Yamamoto S, Sonobe S (1995) The use of model systems prepared from tobacco BY-2 cells for studies of the plant cytoskeleton. J Microsc 181: 145–152

    Article  Google Scholar 

  • Shimmen T, Yokota E (1994)Physiological and biochemical aspects of cytoplasmic streaming. Int Rev Cytol 155: 97–139

    Google Scholar 

  • Shimmen T, Ridge RW, Lambiris I, Plazinski J, Yokota E, Williamson RE (2000) Plant myosins. Protoplasma 214: 1–10

    CAS  Google Scholar 

  • Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey P (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2: 750–753

    Article  PubMed  CAS  Google Scholar 

  • Sonobe S (1990) Cytochalasin B enhances cytokinetic cleavage in miniprotoplasts isolated from cultured tobacco cells. Protoplasma 155: 239–242

    Article  Google Scholar 

  • Sonobe S (1996) Studies on the plant cytoskeleton using miniprotoplasts of tobacco BY-2 cells. J Plant Res 109: 437–448

    Article  Google Scholar 

  • Tominaga M, Yokota E, Vidali L, Sonobe S, Hepler PK, Shimmen T (2000) The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis. Planta 210: 836–843

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R, Katayama E, Anson M, Shimmen T, Oiwa K (2003) Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J 22: 1263–1272

    Article  PubMed  CAS  Google Scholar 

  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/ GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711– 714

    Google Scholar 

  • Vantard M, Schellenbaum P, Fellous A, Lambert A-M (1991) Characterization of maize microtubule-associated proteins, one of which is related to tau. Biochemistry 30: 9334–9340

    Article  PubMed  CAS  Google Scholar 

  • Vidali L, Yokota E, Cheung AY, Shimmen T, Hepler PK (1999) The 135 kDa actin-bundling protein from Lilium longiflorum pollen is the plant homologue of villin. Protoplasma 209: 283–291

    Article  CAS  Google Scholar 

  • Wallin A, Glimelius K, Eriksson T (1978) Enucleation of plant protoplasts by cytochalasin B. Z Pflanzenphysiol 87: 333–340

    CAS  Google Scholar 

  • Wasteneys GO (2002) Microtubule organization in the green kingdom: chaos or self-order? J Cell Sci 115: 1345–1354

    PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteney GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411: 610–613

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Kikuyama M, Sutoh-Yamamoto N, Kamitsubo E (1994) Purification of actin based motor protein from Chara corallina. Proc Jpn Acad Ser B 70: 175–180

    Google Scholar 

  • Yasuhara H, Sonobe S, Shibaoka H (1992) ATP-sensitive binding to microtubules of polypeptides extracted from isolated phragmoplasts of tobacco BY-2. Cell 33: 601–608

    CAS  Google Scholar 

  • Yasuhara H, Muraoka M, SHogaki H, Mori H, Sonobe S (2002) TMBP200, a microtubule bundling polypeptide isolated from telophase tobacco BY-2 cells is a MOR1 homologue. Plant Cell Physiol 43: 595–603

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Shimmen T (1994) Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177: 153–162

    Article  CAS  Google Scholar 

  • Yokota E, Shimmen T (1999) The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209: 264–266

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Shimmen T (2000) Characterization of native actin-binding proteins from pollen. In: Staiger CJ, Balusška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer Academic Publishers, The Netherlands, pp 103–118

    Google Scholar 

  • Yokota E, McDonald AR, Liu B, Shimmen T, Palevitz BA (1995a) Localization of a 170 kDa myosin heavy chain in plant cells. Protoplasma 185: 178–187

    Article  CAS  Google Scholar 

  • Yokota E, Sonobe S, Igarashi H, Shimmen T (1995b) Plant microtubules can be translocated by a dynein ATPase from sea urchin in vitro. Plant Cell Physiol 36: 1563–1569

    CAS  Google Scholar 

  • Yokota E, Takahara K, Shimmen T (1998) Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. Plant Physiol 116: 1421–1429

    Google Scholar 

  • Yokota E, Muto S, Shimmen T (1999a) Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol 119: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Vidali L, Tominaga M, Tahara H, Orii H, Morizane Y, Hepler PK, Shimmen T (2003) Plant 115-kDa actin-filament bundling protein, P-115-ABP, is a homologue of plant villin and is widely distributed in cells. Plant Cell Physiol 44, in press

    Google Scholar 

  • Yokota E, Yukawa C, Muto S, Sonobe S, Shimmen T (1999b) Biochemical and immunocytochemical characterization of two types of myosins in cultured tobacco bright yellow-2 cells. Plant Physiol 121: 525–534

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Sonobe S, Orii H, Yuasa T, Inada S, Shimmen T (2001) The type and the localization of 175-kDa myosin in tobacco cultured cells BY-2. J Plant Res 114: 115–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sonobe, S., Yokota, E., Shimmen, T. (2004). Tobacco BY-2 Cells as an Ideal Material for Biochemical Studies of Plant Cytoskeletal Proteins. In: Nagata, T., Hasezawa, S., Inzé, D. (eds) Tobacco BY-2 Cells. Biotechnology in Agriculture and Forestry, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10572-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10572-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07305-2

  • Online ISBN: 978-3-662-10572-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics