Skip to main content

Expression, Localisation and Stability of Mitotic Cyclins in Tobacco BY-2 Cells

  • Chapter
Book cover Tobacco BY-2 Cells

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 53))

  • 217 Accesses

Abstract

Cyclin-dependent kinases (CDKs) control the cell cycle transitions in all eukaryotes (Nigg 1995, 2001). In yeast, different cyclins act with a single catalytic subunit (Cdc28 in budding yeast and Cdc2 in fission yeast), whereas in multicellular eukaryotes, different cyclins act with different CDKs. It is the sequential waves of different cyclin-CDK activities that regulate the progress through the cell cycle (Pines and Rieder 2001). The activity of the CDKs is dependent on cyclin binding, which is also involved in the subcellular localisation and substrate specificity of the CDK complexes. Since cyclin protein levels oscillate during the cell cycle, these proteins directly determine the timing of CDK activation. Cyclins that specifically activate CDKs have been grouped into different families: the G1 cyclins (called CLNs in budding yeast and D- and E-type cyclins in animals) and the mitotic cyclins (called CLBs in budding yeast and A- and B-type cyclins in animals). In animals, mitotic cyclins have been further subdivided in two different A-type cyclins (A1 and A2) and three different B-type cyclins (B1, B2 and B3). The G1 cyclins function during G1 phase to control cell cycle commitment in response to growth and mitogenic signals (Sherr 1994). Whereas vertebrate A-type cyclin binds to both CDK1 and CDK2 and is required for S-phase and early mitotic events, cyclin B1 bound to CDK1 is assumed to fulfil only mitotic functions. Both CDK1 and CDK2 are closely related to the yeast Cdc28/Cdc2 CDKs, which share the conserved PSTAIRE motif in the cyclin binding domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amon A, Irniger S, Nasmyth K (1994) Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell 77:1037– 1050

    Google Scholar 

  • Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11: 605–612

    Article  PubMed  CAS  Google Scholar 

  • Azimzadeh J, Traas J, Pastuglia M (2001) Molecular aspects of microtubule dynamics in plants. Curr Opin Plant Biol 4: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1: 82–87

    Article  PubMed  CAS  Google Scholar 

  • Criqui MC, Genschik P (2002) Mitosis in plants: how far we have come at the molecular level? Curr Opin Plant Biol 5: 487–493

    Article  PubMed  CAS  Google Scholar 

  • Criqui MC, Parmentier Y, Derevier A, Shen WH, Dong A, Genschik P (2000) Cell cycle-dependent proteolysis and ectopic overexpression of cyclin B1 in tobacco BY2 cells. Plant J 24: 763–773

    Article  PubMed  CAS  Google Scholar 

  • Criqui MC, Weingartner M, Capron A, Parmentier Y, Shen WH, Heberle-Bors E, Bogre L, Genschik P (2001) Subcellular localisation of GFP-tagged tobacco mitotic cyclins during the cell cycle and after spindle checkpoint activation. Plant J 28: 569–581

    Article  PubMed  CAS  Google Scholar 

  • Cross FR, Yuste-Rojas M, Gray S, Jacobson MD (1999) Specialization and targeting of B-type cyclins. Mol Cell 4: 11–19

    Article  PubMed  CAS  Google Scholar 

  • den Elzen N, Pines J (2001) Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol 153: 121–135

    Article  Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33: 389–396

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102: 411–424

    Article  PubMed  CAS  Google Scholar 

  • Gallant P, Nigg EA (1992) Cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J Cell Biol 117: 213–224

    Article  PubMed  CAS  Google Scholar 

  • Geelen DN, Inzé DG (2001) A bright future for the bright yellow-2 cell culture. Plant Physiol 127: 1375–1379

    Article  PubMed  CAS  Google Scholar 

  • Geley S, Kramer E, Gieffers C, Gannon J, Peters JM, Hunt T (2001) Anaphase-promoting complex/ cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol 153: 137–148

    Article  PubMed  CAS  Google Scholar 

  • Genschik P, Criqui MC, Parmentier Y, Derevier A, Fleck J (1998) Cell cycle-dependent proteolysis in plants. Identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10: 2063–2076

    PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Gorbsky GJ (2001) The mitotic spindle checkpoint. Curr Biol 11: R1001–R1004

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Burton JL, Solomon MJ (2002) The anaphase-promoting complex: it’s not just for mitosis any more. Genes Dev 16: 2179–2206

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479 Hershko A, Ganoth D, Pehrson J, Palazzo RE, Cohen LH (1991) Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J Biol Chem 266: 16376–16379

    Google Scholar 

  • Hirt H, Mink M, Pfosser M, Bogre L, Gyorgyey J, Jonak C, Gartner A, Dudits D, Heberle-Bors E (1992) Alfalfa cyclins: differential expression during the cell cycle and in plant organs. Plant Cell 4: 1531–1538

    PubMed  CAS  Google Scholar 

  • Holloway SL, Glotzer M, King RW, Murray AW (1993) Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor. Cell 73: 1393–1402

    Article  PubMed  CAS  Google Scholar 

  • Irniger S, Piatti S, Michaelis C, Nasmyth K (1995) Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81: 269–278

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2000) Factors controlling cyclin B expression. Plant Mol Biol 43: 677–690

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Criqui MC, Sakabe M, Ohno T, Hata S, Kouchi H, Hashimoto J, Fukuda H, Komamine A, Watanabe A (1997) Cell-cycle-regulated transcription of A- and B-type plant cyclin genes in synchronous cultures. Plant J 11: 983–992

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Araki S, Matsunaga S, Itoh T, Nishihama R, Machida Y, Doonan JH, Watanabe A (2001) G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13: 1891–1905

    PubMed  CAS  Google Scholar 

  • Joubes J, Chevalier C, Dudits D, Heberle-Bors E, Inzé D, Umeda M, Renaudin JP (2000) CDKrelated protein kinases in plants. Plant Mol Biol 43: 607–620

    Article  PubMed  CAS  Google Scholar 

  • Juang YL, Huang J, Peters JM, McLaughlin ME, Tai CY, Pellman D (1997) APC-mediated proteolysis of Ase1 and the morphogenesis of the mitotic spindle. Science 275: 1311–1314

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Hirano M, Kobayashi R, Hirano T (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282: 487–490

    Article  PubMed  CAS  Google Scholar 

  • King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW (1995) A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279–288

    Article  PubMed  CAS  Google Scholar 

  • Li J, Meyer AN, Donoghue DJ (1997) Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc Natl Acad Sci USA 94: 502–507

    Article  PubMed  CAS  Google Scholar 

  • Marc J, Granger CL, Brincat J, Fisher DD, Kao TH, McCubbin AG, Cyr RJ (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cell. Plant Cell 10: 1927–1939

    PubMed  CAS  Google Scholar 

  • Meskiene I, Bogre L, Dahl M, Pirck M, Ha DT, Swoboda I, Heberle-Bors E, Ammerer G, Hirt H (1995) cycMs3, a novel B-type alfalfa cyclin gene, is induced in the G0-to-G1 transition of the cell cycle. Plant Cell 7: 759–771

    Google Scholar 

  • Mews M, Sek FJ, Moore R, Volkmann D, Gunning BES, John PCL (1997) Mitotic cyclin distribution during maize cell division: implications for the sequence diversity and function of cyclins in plants. Protoplasma 200: 128–145

    Article  CAS  Google Scholar 

  • Mironov V, De Veylder L, Van Montagu M, Inzé D (1999) Cyclin-dependent kinases and cell division in plants–the nexus. Plant Cell 11: 509–522

    PubMed  CAS  Google Scholar 

  • Murray AW, Solomon MJ, Kirschner MW (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339: 280–286

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992). Tobacco BY-2 cell line as the “HeLâ cell in the cell biology of higher plants. Int Rev Cytol 132: 1–30

    Article  CAS  Google Scholar 

  • Nigg EA (1995) Cyclin-dependent protein kinases: Key regulators of the eukaryotic cell cycle. BioEssays 17: 471–480

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nature Rev Mil Cell Biol 2: 21–32

    Article  CAS  Google Scholar 

  • Pellman D, Christman MF (2001) Separase anxiety: dissolving the sister bond and more. Nat Cell Biol 3: E207–E209

    Article  PubMed  CAS  Google Scholar 

  • Peters JM (2002) The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9: 931–943

    Article  PubMed  CAS  Google Scholar 

  • Pfleger CM, Kirschner MW (2000) The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev 14: 655–665

    PubMed  CAS  Google Scholar 

  • Pines J, Hunter T (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Pines J, Hunter T (1994) The differential localization of human cyclins A and B is due to a cytoplasmic retention signal in cyclin B. EMBO J 13: 3772–3781

    PubMed  CAS  Google Scholar 

  • Pines J, Rieder CL (2001) Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 3: E3–E6

    Article  PubMed  CAS  Google Scholar 

  • Porceddu A, Stals H, Reichheld JP, Segers G, De Veylder L, Barroco RP, Casteels P, Van Montagu M, Inzé D, Mironov V (2001) A plant-specific cyclin-dependent kinase is involved in the control of G2/M progression in plants. J Biol Chem 276: 36354–36360

    Article  PubMed  CAS  Google Scholar 

  • Qin LX, Perennes C, Richard L, Bouvier-Durand M, Trehin C, Inzé D, Bergounioux C (1996) G2- and early-M-specific expression of the NTCYC1 cyclin gene in Nicotiana tabacum cells. Plant Mol Biol 32: 1093–1101

    Article  PubMed  Google Scholar 

  • Reichheld JP, Chaubet N, Shen WH, Renaudin JP, Gigot C (1996) Multiple A-type cyclins express sequentially during the cell cycle in Nicotiana tabacum BY2 cells. Proc Natl Acad Sci USA 93: 13819–13824

    Article  PubMed  CAS  Google Scholar 

  • Renaudin JP, Savouré A, Philippe H, Van Montagu M, Inzé D, Rouzé P (1998) Characterization and classification of plant cyclin sequences related to A- and B-type cyclins. In: Francis D, Dudits D, Inzé D (eds) Plant Cell Division, Portland, Colchester, UK, pp 67–98

    Google Scholar 

  • Rimmington G, Dalby B, Glover DM (1994) Expression of N-terminally truncated cyclin B in the Drosophila larval brain leads to mitotic delay at late anaphase. J Cell Sci 107: 2729–2738

    PubMed  CAS  Google Scholar 

  • Roudier F, Fedorova E, Gyorgyey J, Feher A, Brown S, Kondorosi A, Kondorosi E (2000) Cell cycle function of a Medicago sativa A2-type cyclin interacting with a PSTAIRE-type cyclindependent kinase and a retinoblastoma protein. Plant J 23: 73–83

    Article  PubMed  CAS  Google Scholar 

  • Savouré A, Feher A, Kalo P, Petrovics G, Csanadi G, Szecsi J, Kiss G, Brown S, Kondorosi A, Kondorosi E (1995) Isolation of a full-length mitotic cyclin cDNA clone CycIIIMs from Medicago sativa: chromosomal mapping and expression. Plant Mol Biol 27: 1059–1070

    Article  PubMed  Google Scholar 

  • Schnittger A, Schobinger U, Stierhof YD, Hulskamp M (2002) Ectopic B-type cyclin expression induces mitotic cycles in endoreduplicating Arabidopsis trichomes. Curr Biol 12: 415–420

    Article  PubMed  CAS  Google Scholar 

  • Setiady YY, Sekine M, Hariguchi N, Yamamoto T, Kouchi H, Shinmyo A (1995) Tobacco mitotic cyclins: cloning, characterization, gene expression and functional assay. Plant J 8: 949–957

    Article  PubMed  CAS  Google Scholar 

  • Shaul O, Mironov V, Burssens S, Van Montagu M, Inzé D (1996) Two Arabidopsis cyclin promoters mediate distinctive transcriptional oscillation in synchronized tobacco BY-2 cells. Proc Natl Acad Sci USA 93: 4868–4872

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79: 551–555

    Article  PubMed  CAS  Google Scholar 

  • Sigrist S, Jacobs H, Stratmann R, Lehner CF (1995) Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. EMBO J 14: 4827–4838

    PubMed  CAS  Google Scholar 

  • Stewart E, Kobayashi H, Harrison D, Hunt T (1994) Destruction of Xenopus cyclins A and B2, but not B1, requires binding to p34cdc2. EMBO J 13: 584–594

    PubMed  CAS  Google Scholar 

  • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6: 185–197

    PubMed  CAS  Google Scholar 

  • Surana U, Amon A, Dowzer C, McGrew J, Byers B, Nasmyth K (1993) Destruction of the CDC28/ CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J 12: 1969–1978

    PubMed  CAS  Google Scholar 

  • Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inzé D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14: 903–916

    Article  PubMed  CAS  Google Scholar 

  • van der Velden HM, Lohka MJ (1994) Cell cycle-regulated degradation of Xenopus cyclin B2 requires binding to p34cdc2. Mol Biol Cell 5: 713–724

    PubMed  Google Scholar 

  • Vodermaier HC (2001) Cell cycle: waiters serving the destruction machinery. Curr Biol 11: R834–R837

    Article  PubMed  CAS  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68: 1015–1068

    Article  PubMed  CAS  Google Scholar 

  • Wäsch R, Cross FR (2002) APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 418: 556–562

    Article  PubMed  Google Scholar 

  • Weingartner M, Pelayo HR, Binarova P, Zwerger K, Melikant B, De La Torre C, Heberle-Bors E, Bögre L (2003) A plant cyclin B2 is degraded early in mitosis and its ectopic expression shortens G2-phase and alleviates the DNA-damage checkpoint. J Cell Sci 116: 487–498

    Article  PubMed  CAS  Google Scholar 

  • Whitfield WG, Gonzalez C, Maldonado-Codina G, Glover DM (1990) The A- and B-type cyclins of Drosophila are accumulated and destroyed in temporally distinct events that define separable phases of the G2-M transition. EMBO J 9: 2563–2572

    PubMed  CAS  Google Scholar 

  • Yamano H, Gannon J, Hunt T (1996) The role of proteolysis in cell cycle progression in Schizosaccharomyces pombe. EMBO J 15: 5268–5279

    PubMed  CAS  Google Scholar 

  • Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13: 2039–2058

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parmentier, Y., Criqui, M.C., Potuschak, T., Genschik, P. (2004). Expression, Localisation and Stability of Mitotic Cyclins in Tobacco BY-2 Cells. In: Nagata, T., Hasezawa, S., Inzé, D. (eds) Tobacco BY-2 Cells. Biotechnology in Agriculture and Forestry, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10572-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10572-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07305-2

  • Online ISBN: 978-3-662-10572-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics