Skip to main content

Protein Sorting and Protein Modification Along the Secretory Pathway in BY-2 Cells

  • Chapter
Tobacco BY-2 Cells

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 53))

Abstract

Many different compartments in the cell, which we call organelles, function as many respective specialized intracellular factories in the cell. Some organelles, such as chloroplast, mitochondria and peroxisomes, function relatively independently of other organelles. In contrast, the endoplasmic reticulum (ER), Golgi apparatus, endosome, prevacuolar compartments (PVC), secretory vesicles and vacuoles, consist of a highly sophisticated organelle network: these organelles are always communicating with each other and with the plasma membrane. The rough ER, the Golgi apparatus and the vacuoles can be easily distinguished morphologically from other organelles. However, others, such as the endosome and prevacuolar compartment cannot be easily distinguished morphologically from the smooth ER and secretory vesicles, at least in BY-2 cells, because these organelles may be defined only by their function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed S, Rojo E, Kovaleva V, Venkataraman S, Dombrowski J, Matsuoka K, Raikhel N (2000) The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol 149: 1335–1344

    Article  PubMed  CAS  Google Scholar 

  • An G (1985) High-efficiency transformation of cultured tobacco cells. Plant Physiol 79: 568–570

    Article  PubMed  CAS  Google Scholar 

  • Bednarek S, Raikhel N (1991) The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell 3: 1195–1206

    PubMed  CAS  Google Scholar 

  • Bednarek S, Wilkins T, Dombrowski J, Raikhel N (1990) A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2: 1145–1155

    PubMed  CAS  Google Scholar 

  • Bethke P, Jones R (2000) Vacuoles, prevacuolar compartments. Curr Opin Plant Biol 3: 469–475

    Article  PubMed  CAS  Google Scholar 

  • Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G, Inze D, Zabeau M (2002) Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA 99: 14825–14830

    Article  PubMed  CAS  Google Scholar 

  • Brodsky J (1998) Translocation of proteins across the endoplasmic reticulum membrane. Int Rev Cytol 178: 277–328

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Rogers S, Butler J, Beevers L, Rogers J (2000) Structural requirements for ligand binding by a probable plant vacuolar sorting receptor. Plant Cell 12: 493–506

    PubMed  CAS  Google Scholar 

  • Czempinski K, Frachisse J, Maurel C, Barbier-Brygoo H, Mueller-Roeber B (2002) Vacuolar membrane localization of the Arabidopsis “two-pore” K+ channel KCO1. Plant J 29: 809–820

    Article  PubMed  CAS  Google Scholar 

  • Denecke J, Goldman M, Demolder J, Seurinck J, Botterman J (1991) The tobacco luminal binding protein is encoded by a multigene family. Plant Cell 3: 1025–1035

    PubMed  CAS  Google Scholar 

  • Denmat-Ouisse L, Faye L, Gomord V (1999) Post-translational maturation of natural, drug-induced missorted phytohemagglutinin. Plant Physiol Biochem 37: 849–858

    Article  PubMed  CAS  Google Scholar 

  • Dixit R, Cyr R (2002) Golgi secretion is not required for marking the preprophase band site in cultured tobacco cells. Plant J 29: 99–108

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski J, Schroeder M, Bednarek S, Raikhel N (1993) Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell 5: 587–596

    PubMed  CAS  Google Scholar 

  • Emans N, Zimmermann S, Fischer R (2002) Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A, wortmannin. Plant Cell 14: 71–86

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Sztul E (2003) Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator. J Cell Biol 160: 157–163

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Denmat L, Fitchette-Laine A, Satiat-Jeunemaitre B, Hawes C, Faye L (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 11:313– 325

    Google Scholar 

  • Hamasaki M, Noda T, Ohsumi Y (2003) The early secretory pathway contributes to autophagy in yeast. Cell Struct Funct 28: 49–54

    Article  PubMed  CAS  Google Scholar 

  • Hong Z, Delauney A, Verma D (2001) A cell plate-specific callose synthase, its interaction with phragmoplastin. Plant Cell 13: 755–768

    PubMed  CAS  Google Scholar 

  • Inaba T, Nagano Y, Nagasaki T, Sasaki Y (2002) Distinct localization of two closely related Ypt3/Rab11 proteins on the trafficking pathway in higher plants. J Biol Chem 277: 9183–9188

    Article  PubMed  CAS  Google Scholar 

  • Jauh G, Phillips T, Rogers J (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11: 1867–1882

    PubMed  CAS  Google Scholar 

  • Kawazu T, Kawano S, Kuroiwa T (1995) Distribution of Golgi apparatus in the mitosis of cultured tobacco cells as revealed by DiOC6 fluorescence microscopy. Protoplasma 186: 183–192

    Article  Google Scholar 

  • Kirsch T, Paris N, Butler J, Beevers L, Rogers J (1994) Purification, initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91: 3403–3407

    Article  PubMed  CAS  Google Scholar 

  • Koide Y, Hirano H, Matsuoka K, Nakamura K (1997) The N-terminal propeptide of the precursor to sporamin acts as a vacuole-targeting signal even at the C terminus of the mature part in tobacco cells. Plant Physiol 114: 863–870

    Article  PubMed  CAS  Google Scholar 

  • Koide Y, Matsuoka K, Ohto M, Nakamura K (1999) The N-terminal propeptide and the C terminus of the precursor to 20-kilo-dalton potato tuber protein can function as different types of vacuolar sorting signals. Plant Cell Physiol 40: 1152–1159

    Article  PubMed  CAS  Google Scholar 

  • Kutsuna N, Hasezawa S (2002) Dynamic organization of vacuolar and microtubule structures during cell cycle progression in synchronized tobacco BY-2 cells. Plant Cell Physiol 43: 965–973

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Yoo B, Rojas M, Gomez-Ospina N, Staehelin L, Lucas W (2003) Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299: 392–396

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Rogers S, Tse Y, Lo S, Sun S, Jauh G, Jiang L (2002) BP-80 and homologs are concentrated on post-Golgi, probable lytic prevacuolar compartments. Plant Cell Physiol 726–742

    Google Scholar 

  • Matsuoka K, Nakamura K (1991) Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88: 834–838

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Nakamura K (1999) Large alkyl side-chains of isoleucine and leucine in the NPIRL region constitute the core of the vacuolar sorting determinant of sporamin precursor. Plant Mol Biol 41: 825–835

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Neuhaus J-M (1999) cis-element of protein transport to the plant vacuoles J Exp Bot 50:165–173

    Google Scholar 

  • Matsuoka K, Bassham D, Raikhel N, Nakamura K (1995a) Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol 130: 1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Watanabe N, Nakamura K (1995b) O-glycosylation of a precursor to a sweet potato vacuolar protein, sporamin, expressed in tobacco cells. Plant J 8: 877–889

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K, Higuchi T, Maeshima M, Nakamura K (1997) A vacuolar-type H+-ATPase in a nonvacuolar organelle is required for the sorting of soluble vacuolar protein precursors in tobacco cells. Plant Cell 9: 533–546

    PubMed  CAS  Google Scholar 

  • Merigout P, Kepes F, Perret AM, Satiat-Jeunemaitre B, Moreau P (2002) Effects of brefeldin A and nordihydroguaiaretic acid on endomembrane dynamics and lipid synthesis in plant cells. FEBS Lett 518: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111: 1233–1241

    PubMed  CAS  Google Scholar 

  • Mullen R, Lisenbee C, Miernyk J, Trelease R (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell 11: 2167–2185

    PubMed  CAS  Google Scholar 

  • Nebenfuhr A, Frohlick J, Staehelin L (2000) Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. Plant Physiol 124: 135–151

    Article  PubMed  CAS  Google Scholar 

  • Pagny S, Denmat-Ouisse LA, Gomord V, Faye L (2003) Fusion with HDEL protects cell wall invertase from early degradation when N-glycosylation is inhibited. Plant Cell Physiol 44:173– 182

    Google Scholar 

  • Pelham H, Rothman J (2000) The debate about transport in the Golgi—two sides of the same coin? Cell 102: 713–719

    Article  PubMed  CAS  Google Scholar 

  • Petrasek J, Cerna A, Schwarzerova K, Elckner M, Morris DA, Zazimalova E (2003) Do phytotropins inhibit auxin efflux by impairing vesicle traffic? Plant Physiol 131: 254–263

    Article  PubMed  CAS  Google Scholar 

  • Ritzenthaler C, Laporte C, Gaire F, Dunoyer P, Schmitt C, Duval S, Piequet A, Loudes A, Rohfritsch O, Stussi-Garaud C, Pfeiffer P (2002a) Grapevine fanleaf virus replication occurs on endoplasmic reticulum-derived membranes. J Virol 76: 8808–8819

    Article  PubMed  CAS  Google Scholar 

  • Ritzenthaler C, Nebenfuhr A, Movafeghi A, Stussi-Garaud C, Behnia L, Pimpl P, Staehelin L, Robinson D (2002b) Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14: 237–261

    Article  PubMed  CAS  Google Scholar 

  • Robinson D (ed) (2003) The Golgi apparatus and the plant secretory pathway. Annual Plant Reviews vol. 9, Blackwell Publishing, Oxford

    Google Scholar 

  • Saint-Jore C, Evins J, Batoko H, Brandizzi F, Moore I, Hawes C (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J 29: 661–678

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Niwa Y, Ashida H, Tanaka K, Kawamukai M, Matsuda H, Nakagawa T (1999) Expression of a gene for cyclophilin which contains an amino-terminal endoplasmic reticulum-targeting signal. Plant Cell Physiol 40: 77–87

    Article  PubMed  CAS  Google Scholar 

  • Samuels A, Giddings TJ, Staehelin L (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130: 1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Schekman R, Orci L (1996) Coat proteins and vesicle budding. Science 271: 1526–1533

    Article  PubMed  CAS  Google Scholar 

  • Shpak E, Barbar E, Leykam J, Kieliszewski M (2001) Contiguous hydroxyproline residues direct hydroxyproline arabinosylation in Nicotiana tabacum. J Biol Chem 276: 11272–11278

    Article  PubMed  CAS  Google Scholar 

  • Staehelin L (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11: 1151–1165

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Tada M, Saito C, Yashiroda H, Nakano A (1998) Isolation of a tobacco cDNA encoding Sar1 GTPase and analysis of its dominant mutations in vesicular traffic using a yeast complementation system. Plant Cell Physiol 39: 590–599

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Ueda T, Sato K, Abe H, Nagata T, A. N (2000) A dominant negative mutant of sar1 GTPase inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 23: 517–525

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Ueda M, Yahara N, Nakano A (2002) Arf1 GTPase plays roles in the protein traffic between the endoplasmic reticulum and the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 31: 499–515

    Article  PubMed  CAS  Google Scholar 

  • Toyooka K, Okamoto T, Minamikawa T (2000) Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol 154: 973–982

    Article  Google Scholar 

  • Winicur Z, Zhang G, Staehelin L (1998) Auxin deprivation induces synchronous Golgi differentiation in suspension-cultured tobacco BY-2 cells. Plant Physiol 117: 501–513

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara H, Sonobe S, Shibaoka H (1995) Effects of brefeldin A on the formation of the cell plate in tobacco BY-2 cells. Eur J Cell Biol 66: 274–281

    PubMed  CAS  Google Scholar 

  • Zhao Z, Tan L, Showalter A, Lamport D, Kieliszewski M (2002) Tomato LeAGP-1 arabinogalactanprotein purified from transgenic tobacco corroborates the Hyp contiguity hypothesis. Plant J 31: 431–444

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, von Mollard G, Kovaleva V, Stevens T, Raikhel N (1999) The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell 10: 2251–2264

    PubMed  CAS  Google Scholar 

  • Zuo J, Niu Q, Nishizawa N, Wu Y, Kost B, Chua N (2000) KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell 12: 1137–1152

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsuoka, K. (2004). Protein Sorting and Protein Modification Along the Secretory Pathway in BY-2 Cells. In: Nagata, T., Hasezawa, S., Inzé, D. (eds) Tobacco BY-2 Cells. Biotechnology in Agriculture and Forestry, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10572-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10572-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07305-2

  • Online ISBN: 978-3-662-10572-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics