Skip to main content

In Vitro Transcription Systems from BY-2 Cells

  • Chapter
Tobacco BY-2 Cells

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 53))

Abstract

The in vitro transcription system is a powerful method to dissect molecular mechanisms of transcription of genes in question, usually performed in cellular or nuclear extracts containing transcription apparatuses with exogenous DNA templates and four nucleoside triphosphate (NTP) substrates. The first eukaryotic system was reported by Weil et al. (1979). They carried out in vitro transcription using a cytosolic extract and purified Pol II from HeLa cells. Manley et al. (1980) followed with in vitro assays using a whole cell extract from HeLa cells. In 1983, Dignam et al. (1983) established a standard procedure to prepare nuclear extracts from HeLa cells. Based on these efforts, many other in vitro systems have been established from different eukaryotic species, for example, yeast, mouse, and fruit fly. Since then, many significant discoveries have been made with these in vitro transcription systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson J, Trotta CR, Li H (1998) tRNA splicing. J Biol Chem 273: 12685–12688

    Google Scholar 

  • Akama K, Kashihara M (1996) Plant nuclear tRNAMet genes are ubiquitously interrupted by intron. Plant Mol Biol 32: 427–434

    Article  PubMed  CAS  Google Scholar 

  • Akama K, Nass A, Junker V, Beier H (1997) Characterization of nuclear tRNATyr introns: their evolution from red algae to higher plants. FEBS Lett 417: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Akama K, Junker V, Yukawa Y, Sugiura M, Beier H (2000) Splicing of Arabidopsis tRNAMet precursors in tobacco cell and wheat germ extracts. Plant Mol Biol 44: 155–165

    Article  PubMed  CAS  Google Scholar 

  • Arnaud P, Yukawa Y, Lavie L, Pelissier T, Sugiura M, Deragon JM (2001) Analysis of the SINE S1 Pol III promoter from Brassica; impact of methylation and influence of external sequences. Plant J 26: 295–305

    Article  PubMed  CAS  Google Scholar 

  • Beier D, Beier H (1992) Expression of variant nuclear Arabidopsis tRNASer genes and pre-tRNA maturation differ in HeLa, yeast and wheat germ extracts. Mol Gen Genet 233: 201–208

    CAS  Google Scholar 

  • Brown JWS, Echeverria M, Qu LH (2003) Plant snoRNAs: functional evolution and new modes of gene expression. Trends Plant Sci 8: 42–49

    CAS  Google Scholar 

  • Choisne N, Carneiro VTC, Pelletier G, Small I (1997) Implication of 5’-flanking sequence elements in expression of a plant tRNALeu gene. Plant Mol Biol 36: 113–123

    Article  Google Scholar 

  • Cloix C, Tutois S, Yukawa Y, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S (2002) Analysis of the 5S RNA pool in Arabidopsis thaliana: RNAs are heterogeneous and only two of the genomic 5S loci produce mature 5S RNA. Genome Res 12: 132–144

    CAS  Google Scholar 

  • Deragon JM, Landry BS, Pelissier T, Tutois S, Tourmente S, Picard G (1994) An analysis of retroposition in plants based on a family of SINEs from Brassica napus. J Mol Evol 39: 378–386

    CAS  Google Scholar 

  • Deutscher MP (1995) tRNA processing nucleases. In: Söll D, RajBhandary UL (eds) tRNA: Structure, Biosynthesis, and Function. American Society for Microbiology, Washington, pp 51–65

    Google Scholar 

  • Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 11: 1475–1489

    Article  PubMed  CAS  Google Scholar 

  • Fan H, Sugiura M (1995) A plant basal in vitro system supporting accurate transcription of both RNA polymerase II- and III-dependent genes: supplement of green leaf component(s) drives accurate transcription of a light-responsive rbcS gene. EMBO J 14: 1024–1031

    PubMed  CAS  Google Scholar 

  • Fan H, Sugiura M (1996) Basal and activated in vitro transcription in plants by RNA polymerase II and III. Methods Enzymol 273: 268–277

    Article  PubMed  CAS  Google Scholar 

  • Fan H, Yakura K, Miyanishi M, Sugita M, Sugiura M (1995) In vitro transcription of plant RNA polymerase I-dependent rRNA genes is species-specific. Plant J 8: 295–298

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Kiss T, Marshallsay C, Waibel F (1990) U-snRNA genes, U-snRNAs and U-snRNPs of higher plants. Mol Biol Rep 14: 125–129

    Google Scholar 

  • Fuchs T, Beier D, Beier H (1992) The tRNATyr multigene family of Nicotiana rustica: genome organization, sequence analyses and expression in vitro. Plant Mol Biol 20: 869–878

    Article  PubMed  CAS  Google Scholar 

  • Geiduschek EP, Kassavetis GA (1992) RNA polymerase III transcription complexes. In: McKnight SL, Yamamoto KR (eds) Transcription regulation, vol 1, Cold Spring Harbor Laboratory Press, New York, pp 247–280

    Google Scholar 

  • Goodall GJ, Filipowicz W (1991) Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J 10: 2635–2644

    PubMed  CAS  Google Scholar 

  • Gopalan V, Vioque A, Altman S (2002) RNase P: variations and uses. J Biol Chem 277: 6759–6762

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Yukawa Y, Sugita M, Sugiura M (2002) Organization and transcription of the gene family encoding chlorophyll a/b-binding proteins in Nicotiana sylvestris. Gene 289: 161–168

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Yukawa Y, Sugiura M (2003a) In vitro analysis of transcription initiation and termination from the Lhcb1 gene family in Nicotiana sylvestris: detection of transcription termination sites. Plant J 33: 1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Yukawa Y, Obokata J, Sugiura M (2003b) A tRNALeu-like sequence located immediately upstream of an Arabidopsis clock-regulated gene is transcriptionally active: efficient transcription by an RNA polymerase III-dependent in vitro transcription system. Gene 289: 161–168

    Article  Google Scholar 

  • Heard DJ, Filipowicz W, Marques JP, Palme K, Gualberto JM (1995) An upstream U-snRNA gene-like promoter is required for transcription of the Arabidopsis thaliana 7SL RNA gene. Nucleic Acids Res 23: 1970–1976

    Article  PubMed  CAS  Google Scholar 

  • Kassavetis GA, Joazeiro CAP, Pisano M, Geiduschek EP, Colbert T, Hahn S, Blanco JA (1992) The role of the TATA-binding protein in the assembly and function of the multisubunit yeast RNA polymerase III transcription factor, TFIIIB. Cell 71: 1055–1064

    Google Scholar 

  • Kato A, Nakajima T, Yamashita J, Yakura K, Tanifuji S (1990) The structure of the large spacer region of the rDNA in Vicia faba and Pisum sativum. Plant Mol Biol 14: 983–993

    Article  PubMed  CAS  Google Scholar 

  • Kiss T, Marshallsay C, Filipowicz W (1991) Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro. Cell 65: 517–526

    Article  PubMed  CAS  Google Scholar 

  • Kiss T, Marshallsay C, Filipowicz W (1992) 7–2/MRP RNAs in plant and mammalian cells: association with higher order structures in the nucleolus. EMBO J 11: 3737–3746

    Google Scholar 

  • Manley JL, Fire A, Cano A, Sharp PA, Gefter ML (1980) DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc Natl Acad Sci USA 77: 3855–3859

    Article  PubMed  CAS  Google Scholar 

  • Marshallsay C, Kiss T, Filipowicz W (1990) Nucleotide sequence and expression of a new Arabidopsis U2 snRNA gene. Nucleic Acids Res 18: 5280

    Article  PubMed  CAS  Google Scholar 

  • Mathieu O, Yukawa Y, Sugiura M, Picard G, Tourmente S (2002) 5S rRNA genes expression is not inhibited by DNA methylation in Arabidopsis. Plant J 29: 313–323

    Google Scholar 

  • Matoušek J, Junker V, Vrba L, Schubert J, Patzak J, Steger G (1999) Molecular characterization and genome organization of 7SL RNA genes from hop (Humulus lupulus L.). Gene 239: 173–183

    Article  PubMed  Google Scholar 

  • Morl M, Marchfelder A (2001) The final cut. The importance of tRNA 3’-processing. EMBO Rep 2: 17–20

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132: 1–30

    CAS  Google Scholar 

  • Nemoto Y, Kawano S, Nakamura S, Mita T, Nagata T, Kuroiwa T (1988) Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. I. Isolation of proplastid-nuclei from cultured cells and identification of proplastid-nuclear proteins. Plant Cell Physiol 29: 167–177

    Google Scholar 

  • Ohme-Takagi M, Shinshi H (1990) Structure and expression of a tobacco β-1, 3-glucanase gene. Plant Mol Biol 15: 941–946

    CAS  Google Scholar 

  • Platt T (1986) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55: 339–372

    Article  PubMed  CAS  Google Scholar 

  • Shi P-Y, Maizels N, Weiner AM (1998) CCA addition by tRNA nucleotidyltransferase: polymerization without translocation? EMBO J 17: 3197–3206

    CAS  Google Scholar 

  • Solymosy F, Pollák T (1993) Uridylate-rich small nuclear RNAs (U snRNAs), their genes and pseudogenes, and U snRNA in plants: structure and function. A comparative approach. Crit Rev Plant Sci 12: 275–369

    Google Scholar 

  • Sprague KU (1995) Transcription of eukaryotic tRNA genes. In: Söll D, RajBhandary UL (eds) tRNA: structure, biosynthesis, and function. American Society for Microbiology, Washington, DC, pp 31–50

    Google Scholar 

  • Stange N, Beier H (1986) A gene for the major cytoplasmic tRNATyr from Nicotiana rustica contains a 13 nucleotides long intron. Nucleic Acids Res 14: 8691

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1996) Plant in vitro transcription: the opening of a new era. Trends in Plant Sci 1: 41

    Article  Google Scholar 

  • Sugiura M (1997) Plant in vitro transcription systems. Annu Rev Plant Physiol Plant Mol Biol 48: 383–398

    Article  PubMed  CAS  Google Scholar 

  • Vankan P, Filipowicz W (1989) A U-snRNA gene-specific upstream element and a -30 “TATA box” are required for transcription of the U2 snRNA gene of Arabidopsis thaliana. EMBO J 8: 3875–3882

    PubMed  CAS  Google Scholar 

  • Vankan P, Edoh D, Filipowicz W (1988) Structure and expression of the U5 snRNA gene of Arabidopsis thaliana. Conserved upstream sequence elements in plant U-RNA genes. Nucleic Acids Res 16: 10425–10440

    Google Scholar 

  • van Tol H, Stange N, Gross HJ, Beier H (1987) A human and a plant intron-containing tRNATyr gene are both transcribed in a HeLa cell extract but spliced along different pathways. EMBO J 6: 35–41

    Google Scholar 

  • Waibel F, Filipowicz W (1990a) U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res 18: 3451–3458

    Article  PubMed  CAS  Google Scholar 

  • Waibel F, Filipowicz W (1990b) RNA-polymerase specificity of transcription of Arabidopsis U snRNA genes determined by promoter element spacing. Nature 346: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Weil PA, Luse DS, Segall J, Roeder RG (1979) Selective and accurate initiation of transcription at the Ad2 major late promoter in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18: 469–484

    Article  PubMed  CAS  Google Scholar 

  • Westaway SK, Abelson J (1995) Splicing of tRNA precursors. In: Söll D, RajBhandary UL (eds) tRNA: structure, biosynthesis, and function. American Society for Microbiology, Wasington, pp 79–92

    Google Scholar 

  • White RJ (ed) (1998) RNA Polymerase III transcription. Springer, Berlin Heidelberg New York, and RG Land Company, Georgetown, pp 23–55

    Google Scholar 

  • Willis IM (1993) RNA polymerase III-Genes, factors and transcriptional specificity. Eur J Biochem 2: 1–11

    Article  CAS  Google Scholar 

  • Yamashita J, Nakajima T, Tanifuji S, Karo A (1993) Accurate transcription initiation of Vicia faba tDNA in a whole cell extract from embryonic axes. Plant J 3: 187–190

    Article  CAS  Google Scholar 

  • Yukawa Y, Sugiura M (2002) Plant in vitro transcription systems. Tampaku Kakusan Kouso 47: 583–589

    CAS  Google Scholar 

  • Yukawa Y, Fan H, Akama K, Beier H, Gross HJ, Sugiura M (2001) A tobacco nuclear extract supporting transcription, processing, splicing and modification of plant intron-containing tRNA precursors. Plant J 28: 583–594

    Article  PubMed  CAS  Google Scholar 

  • Yukawa Y, Matoušek J, Grimm M, Vrba L, Steger G, Sugiura M, Beier H (2002) Plant 7SL RNA and tRNATyr genes with inserted antisense sequences are efficiently expressed in an in vitro transcription system from Nicotiana tabacum cells. Plant Mol Biol 50: 713–723

    Article  PubMed  CAS  Google Scholar 

  • Yukawa Y, Sugita M, Choisne N, Small I, Sugiura M (2000) The TATA motif, the CAA motif and the poly(T) transcription termination motif are all important for transcription re-initiation on plant tRNA genes. Plant J 22: 439–447

    Article  PubMed  CAS  Google Scholar 

  • Yukawa Y, Sugita M, Sugiura M (1997) Efficient in vitro transcription of plant nuclear tRNASer genes in a nuclear extract from tobacco cultured cells. Plant J 12: 965–970

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q (1996) RNA polymerase II-dependent plant in vitro transcription systems. Plant J 10:185– 188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yukawa, Y., Sugiura, M. (2004). In Vitro Transcription Systems from BY-2 Cells. In: Nagata, T., Hasezawa, S., Inzé, D. (eds) Tobacco BY-2 Cells. Biotechnology in Agriculture and Forestry, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10572-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10572-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07305-2

  • Online ISBN: 978-3-662-10572-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics