Remarks on Fractional Time

  • Rudolf Hilfer


It is not possible to repeat an experiment in the past. The underlying philosophical truth in this observation is the difference between certainty of the past and potentiality of the future. This difference is discussed, for example, in C.F. von Weizsäcker’s papers [1, 2], and it was often pointed out by him in our discussions in the years 1983–1986 in the Starnberg institute. The perennial philosophical problem related to this difference between past and future is the question whether time is real or not. Compared to the difference between past and future, the dogmatic time reversibility of mechanical processes in physics appears as a secondary and derived property. Let us therefore assume for the purposes of this paper that the asymmetry of time is more fundamental than the reversibility of time implied by the limited validity of mechanical equations.


Time Evolution Operator Fractional Time Time Translation Semigroup Property Hyperscaling Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.F. von Weizsäcker: Der zweite Hauptsatz und der Unterschied von Vergangenheit und Zukunft. Ann. Physik 36, 275 (1939)MATHCrossRefGoogle Scholar
  2. 2.
    C.F. von Weizsäcker: Aufbau der Physik. Hanser, München 1985Google Scholar
  3. 3.
    R. Hilfer: Fractional time evolution. In: R. Hilfer (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore 2000, p. 87CrossRefGoogle Scholar
  4. 4.
    J. Lebowitz: Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy. Physica A 194, 1 (1993)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    R. Butzer and H. Berens: Semigroups of Operators and Approximation. Vol. 145 of Die Grundleheren der mathematischen Wissenschaften in Einzeldarstellungen. Springer, Berlin 1967Google Scholar
  6. 6.
    L. Castell and W. Heidenreich: Dynamical groups of binary alternatives. In: L. Castell, C.F. von Weizsäcker (eds.): Quantum Theory and the Structures of Time and Space, Vol. 4. Carl Hanser Verlag, München 1981, p. 64Google Scholar
  7. 7.
    C.F. von Weizsäcker: The present status of the theory of urs. In: L. Castell, C.F. von Weizsäcker (eds.): Quantum Theory and the Structures of Time and Space, Vol. 4. Carl Hanser Verlag, München 1981, p. 7Google Scholar
  8. 8.
    R. Hilfer: Foundations of fractional dynamics. Fractals 3, 549 (1995)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    E. Stein and G. Weiss: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton 1971Google Scholar
  10. 10.
    C. Berg and G. Forst: Potential Theory on Locally Compact Abelian Groups. Springer, Berlin 1975MATHCrossRefGoogle Scholar
  11. 11.
    B. Gnedenko and A. Kolmogorov: Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Cambridge 1954MATHGoogle Scholar
  12. 12.
    H. Bergstöm: Limit Theorems for Convolutions. Wiley, New York 1963Google Scholar
  13. 13.
    R. Hilfer: Classification theory for anequilibrium phase transitions. Phys. Rev. E 48, 2466 (1993)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    R. Hilfer: Fractional dynamics, irreversibility and ergodicity breaking. Chaos, Solitons and Fractals 5, 1475 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    R. Hilfer: An extension of the dynamical foundation for the statistical equilibrium concept. Physica A 221, 89 (1995)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    V. Zolotarev: Mellin-Stieltjes transforms in probability theory. Theor. Prob. Appl. II, 433 (1957)CrossRefGoogle Scholar
  17. 17.
    W. Schneider: Stable distributions: Fox function representation and generalization. In: S. Albeverio, G. Casati and D. Merlini (eds.) Stochastic Processes in Classical and Quantum Systems. Springer Verlag, Berlin 1986, p. 497CrossRefGoogle Scholar
  18. 18.
    R. Hilfer: Absence of hyperscaling violations for phase transitions with positive specific heat exponent. Z. Physik B 96, 63 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    C. Fox: The G and H functions as symmetrical Fourier kernels. Trans. Am. Math. Soc. 98, 395 (1961)MATHGoogle Scholar
  20. 20.
    A. Prudnikov, Y. Brychkov and O. Marichev: Integrals and Series, Vol. 3. Gordon and Breach, New York 1990Google Scholar
  21. 21.
    B. Rubin: Fractional Integrals and Potentials. Longman, Harlow 1996MATHGoogle Scholar
  22. 22.
    R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific Publ. Co., Singapore 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Rudolf Hilfer

There are no affiliations available

Personalised recommendations