Skip to main content

Hereditäre und erworbene Tubuluspartialfunktionsstörungen

  • Chapter
  • 19 Accesses

Zusammenfassung

Tubuläre Partialfunktionen sind spezifische, meist aktive und genetisch kontrollierte Transportvorgänge, durch die Elektrolyte, organische Substanzen und Wasser rückresorbiert bzw. sezerniert werden. Störungen einzelner Partialfunktionen (Übersicht 32.1) sind meist angeboren und hereditär bedingt [primäre Tubulopathien (TP)], wobei einzelne Transporter bereits genetisch lokalisiert und das Genprodukt identifiziert werden konnte. Kombinierte Störungen mehrerer Partialfunktionen entstehen bei generalisierten Nephropathien oder übergeordneten Stoffwechselstörungen (Übersicht 32.2) und können angeboren oder erworben sein (sekundäre TP).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alon U, Chan JCM (1985) Effects of hydrochlorothiazide and amiloride in renal hypophosphataemic rickets. Pediatrics 75: 754

    PubMed  CAS  Google Scholar 

  2. Berndt M, Ehrich JHH, Lazovic D, Zimmermann J et al. (1996) Clinical course of hypophosphatemic rickets in adults. Clin Nephrol 45: 33

    PubMed  CAS  Google Scholar 

  3. Brodehl J (1992) Renal hyperaminociduria In: Edelmann CM (ed) Pediatric kidney disease, 2nd edn. Little Brown, Boston, p 1811

    Google Scholar 

  4. Brodehl J (1998) Fanconi syndrome. In: Davison AM, Cameron JS Grünfeld JP, Kerr NS, Ritz E, Winerals CG (eds) Oxford Textbook of Clinical Nephrology. 2nd edn. Oxford Univ Press, Oxford, New York, Tokyo, p 1019

    Google Scholar 

  5. Brodehl J, Krause A, Hoyer PF (1988) Assessment of maximal tubular phosphate reabsorption: comparison of direct measurement with the nomogram of Bijvoet. Pediatr Nephrol 2: 183

    Article  PubMed  CAS  Google Scholar 

  6. Byrd DJ, Lind M, Brodehl J (1991) Diagnostic and genetic studies in patients with classic cystinuria. Clin Chem 37: 68

    PubMed  CAS  Google Scholar 

  7. Caldas A, Broyer M, Dechaux M, Kleinknecht C (1992) Primary distal tubular acidosis in childhood: clinical study and long-term follow-up of patients. J Pediatr 121: 233

    Article  PubMed  CAS  Google Scholar 

  8. Calgone MJ, Volpini V, Bisceglia L, Rousaud F et al. (1995) Genetic heterogeneity in cystinuria; the SLC3A1 gene ist linked to type I but not to type III cystinuria. Proc Natl Acad Sci 92: 9667

    Article  Google Scholar 

  9. Gans ROB, Hoorntje SJ (1992) Bartter’s syndrome. In: Cameron S, Davidson AM, Grünfeld JP, Kerr D, Ritz E (eds) Oxford Textbook of Clinical Nephrology. Oxford Univ Press, Oxford New York Tokyo, p 782

    Google Scholar 

  10. International Collaborative Study Group for Bartter-like syndromes (1997) Mutation encoding the inwardly rectifying renal potassium channel, ROMK, cause antenatal variant of Bartter syndrome; evidence for genetic heterogeneity. Hum Mol Genet 6: 17

    Article  Google Scholar 

  11. Kaulitz R, Brodehl J (1989) Langfristige Verläufe von 6 Jungen mit kongenitalem nephrogenen Diabetes insipidus. Klin Pädiatr 201: 425

    Article  PubMed  CAS  Google Scholar 

  12. Knoers N, Monnens L (1990) Amiloride-hydrochlorothiazide versus indometacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. J Pediat 117: 499

    Article  PubMed  CAS  Google Scholar 

  13. Knoers N, van den Ouweland AMW, Verduk M, Monnens LAH, van Oost BA (1994) Inheritance of mutations in the V2 receptor gene in thirteen families with nephrogenic diabetes insipidus. Kidney Intern 46: 170

    Article  CAS  Google Scholar 

  14. Kruse K (1993) Kalzium-Phosphat-Stoffwechselstörungen. In: Kruse K (Hrsg) Pädiatrische Endokrinologie. Stuttgart, S 90

    Google Scholar 

  15. Kruse K (1997) Neue Aspekte zum Hypoparathyreoidismus und Peudohypoparathyreoidismus im Kindes- und Jugendalter. Monatsschr Kinderheikd 145: 1264

    Article  Google Scholar 

  16. Latta K, Hisano S, Chan ICM (1993) Therapeutics of x-linked hypophosphatemic rickets. Pediatr Nephrol 7: 744

    Article  PubMed  CAS  Google Scholar 

  17. Lieburg van AF, Knoers NVAM, Deen PMT (1995) Discovery of aquaporins: a breakthrough in research on renal water transport. Pediatr Nephrol 9: 228

    Article  PubMed  Google Scholar 

  18. Lloyd SE, Hünther W, Pearce SHS, Thomson A et al. (1997) Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Human Mol Genet 6: 1233

    Article  CAS  Google Scholar 

  19. Pak CYC (1984) Pathogenesis of idiopathic hypercalciuria. In: Coe FL (ed) Hypercalciuric states. Pathogenesis, consequences, and treatment. Grune & Stratton, Orlando, p 205

    Google Scholar 

  20. Parks JH, Coe FL, Millmann S (1984) Consequences and treatment of idiopathic calciuria. In: Coe FL (ed) Hypercalciuric states. Pathogenesis, consequences, and treatment. Grune & Stratton, Orlando, p 221

    Google Scholar 

  21. Rasmussen H, Tenenhouse HS (1995) Mendelian hypophosphatemics. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw Hill, New York, p 3717

    Google Scholar 

  22. Reusz GS, Latta K, Hoyer PF, Byrd DJ, Ehrich JHH, Brodehl J (1990) Evidence suggesting hyperoxaluria as a cause of 28. nephrocalcinosis in phosphate-treated hypophosphatemic rickets. Lancet I: 1240

    Google Scholar 

  23. Reusz GS, Hoyer PF, Lucas M, Krohn HP, Ehrich JHH, Brodehl J (1990) X-linked hypophosphataemia: treatment, height gain, and nephrocalcinosis. Arch Dis Child 65: 1125

    Article  PubMed  CAS  Google Scholar 

  24. Ringel MD, Schwindinger WF, Levine MA (1996) Clinical implications of genetic defects in G proteins. The molecular basis of McCune-Albright hereditary osteodystrophy. Medicine (Baltimore) 75: 171

    Article  CAS  Google Scholar 

  25. Rodriguez-Soriano J, Vallo A (1990) Renal tubular acidosis. Pediat Nephrol 4: 268

    Article  PubMed  CAS  Google Scholar 

  26. Santer R, Schneppenheim R, Dombrowski A, Götze H, Steinmann B, Schaub J (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nature Genetics 17: 1

    Google Scholar 

  27. Schnakenburg C von, Byrd DJ, Latta K, Reusz GS, Graf D, Brodehl J (1994) Dermination of oxalate excretion in spot urines of healthy children by ion chromatography. Eur J Clin Chem Clin Biochem 32: 27

    Google Scholar 

  28. Spiegel AM, Weinstein LS (1995) Pseudohypoparathyroidism. In: Scriver CR, Beaudet AL, Sly WS, ValleD (eds) The metabolic and molecular bases of inherited disease. Mc Graw-Hill Inc, New York, St. Louis, San Francisco, p 3073

    Google Scholar 

  29. The HYP Consortium (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nature Genetics 11: 130

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brodehl, J., Ehrich, J.H.H. (1999). Hereditäre und erworbene Tubuluspartialfunktionsstörungen. In: Paumgartner, G., et al. Therapie innerer Krankheiten. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10477-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10477-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10478-1

  • Online ISBN: 978-3-662-10477-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics