Skip to main content

Perspective on “The activated complex in chemical reactions”

Eyring H (1935) J Chem Phys 3: 107

  • Chapter
Theoretical Chemistry Accounts
  • 742 Accesses

Abstract

A general theory of the absolute rates of chemical reactions proved to be an elusive goal for nineteenth century chemists. This goal would only be achieved through a combination of statistical mechanics with the new quantum mechanics of the early twentieth century, when the insights of Henry Eyring and his contemporaries lead to the absolute rate equation that we are only now beginning to rigorously evaluate. The conceptual focus of absolute rate theory is the transition state (or activated complex), the window through which the future plunges into the past, and this is still the foundation of our understanding of chemical reaction rates as we enter the new millennium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eyring H (1935) J Chem Phys 3: 107

    Article  CAS  Google Scholar 

  2. Joyce J (1922) Ulysses. Shakespeare and Company, Paris, p 196

    Google Scholar 

  3. (a) Wilhelmy L (1850) Pogg Ann 81: 422; (b) Wilhelmy L (1850) Pogg Ann 81: 499

    Google Scholar 

  4. Arrhenius S (1889) J Phys Chem 4: 226

    Google Scholar 

  5. Kohnstamm P, Scheffer FEC (1911) Proc K Ned Akad Wet 13: 789

    Google Scholar 

  6. McC Lewis WC (1918) J Chem Soc 113: 47

    Google Scholar 

  7. (a) Niven W (ed) (1952) Maxwell JC, Scientific papers, vol 1. Dover, New York, p 380; (b) Boltzmann L (1876) Wien Ber 74: 503

    Google Scholar 

  8. Marcelin R (1914) C R Acad Sci 158: 407

    CAS  Google Scholar 

  9. Herzfeld KF (1919) Ann Phys 59: 635

    Article  CAS  Google Scholar 

  10. Tolman RC (1920) J Am Chem Soc 42: 2506

    Article  CAS  Google Scholar 

  11. Truhlar DG (1978) J Chem Ed 55: 309

    Article  CAS  Google Scholar 

  12. Born M, Oppenheimer JR (1927) Annl Phys 84: 457

    Article  CAS  Google Scholar 

  13. London F (1929) Z Elektrochem 35: 552

    CAS  Google Scholar 

  14. Eyring H, Polanyi M (1931) Z Phys Chem Abt B 12: 279

    CAS  Google Scholar 

  15. Pelzer H, Wigner E (1932) Z Phys Chem Abt B 15: 445

    Google Scholar 

  16. Wigner EP (1932) Z Phys Chem B 15: 445

    Google Scholar 

  17. Evans MG, Polanyi M (1935) Trans Faraday Soc 31: 875

    Article  CAS  Google Scholar 

  18. Eyring H, Wynne-Jones WFK (1935) J Chem Phys 3: 492

    Article  Google Scholar 

  19. Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes’ McGraw-Hill, New York

    Google Scholar 

  20. Wiberg KB (1955) Chem Rev 55: 713

    Article  CAS  Google Scholar 

  21. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100: 12771

    Article  CAS  Google Scholar 

  22. (a) Mulliken RS (1949) J Chim Phys 46: 497; (b) Mulliken RS (1955) J Chem Phys 23: 1833; (c) Mulliken RS (1955) J Chem Phys 23: 1841; (d) Mulliken RS (1955) J Chem Phys 23: 2338; (e) Mulliken RS (1955) J Chem Phys 23: 2343

    Google Scholar 

  23. Roothan CCJ (1951) Rev Mod Phys 23: 69

    Article  Google Scholar 

  24. Slater JC (1930) Phys Rev 36: 57

    Article  CAS  Google Scholar 

  25. Boys SF (1950) Proc R Soc Lond A 200: 542

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Pittsburgh Pa

    Google Scholar 

  27. (a) Pople JA (1973) In: Smith DW, McRae WB (eds) Energy, structure and reactivity. Wiley, New York, p 51; (b) Hehre WJ, Radom L, Schleyer PvR, Pople JA ( 1986 ) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  28. Bartlett RJ, Purvis GD (1978) Int J Quantum Chem 14: 516

    Article  Google Scholar 

  29. (a) Dunning TH Jr (1989) J Chem Phys 90: 1007; (b) Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96: 6796; (c) Woon DE, Dunning TH Jr (1993) J Chem Phys 98: 1358; (d) Dunning TH Jr (1994) 100: 2975; (e) Dunning TH Jr (1995) 103: 4572; (f) Wilson AK, van Mourik T, Dunning TH Jr (1996) J Mol Struct (Theochem) 388: 339; (g) Woon DE, Peterson KA, Dunning TH Jr (1998) J Chem Phys 109: 2233

    Google Scholar 

  30. (a) Kutzelnigg W (1985) Theor Chim Acta 68: 445; (b) Klopper W, Kutzelnigg W (1987) Chem Phys Lett 134: 17; (c) Klopper W, Kutzelnigg W (1989) Stud Phys Theor Chem 62: 45

    Google Scholar 

  31. Hohenberg P, Kohn W (1964) Phys Rev B 136: 864

    Article  Google Scholar 

  32. Kohn W, Sham LJ (1965) Phys Rev A 140: 1133

    Google Scholar 

  33. (a) Lee C, Yang W, Parr RG (1988) Phys Rev B 37: 785 33. (b) Parr RG, Yang W ( 1989 ) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  34. (a) Becke AD (1993) J Chem Phys 98: 1372; (b) Becke AD (1993) J Chem Phys 98: 5648

    Google Scholar 

  35. Truhlar DG (1991) J Comput Chem 12: 266

    Article  CAS  Google Scholar 

  36. Pulay P (1977) In: Schaefer HF III Applications of electronic structure theory. Plenum, New York, p 153

    Book  Google Scholar 

  37. (a) Handy NC, Schaefer HF III (1984) J Chem Phys 81: 5031; (b) Schlegel HB, Binkley JS, Pople JA (1984) J Chem Phys 80: 1976

    Google Scholar 

  38. Johnson BG, Frisch MJ (1994) J Chem Phys 100: 7429

    Article  CAS  Google Scholar 

  39. Peng C, Schlegel HB (1994) Isr J Chem 33: 449

    Google Scholar 

  40. Wigner E (1937) J Chem Phys 5: 720

    Article  CAS  Google Scholar 

  41. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35: 159

    Article  CAS  Google Scholar 

  42. Eliason MA, Hirschfelder JO (1959) J Chem Phys 30: 1426

    Article  CAS  Google Scholar 

  43. (a) Truhlar DG (1970) J Chem Phys 53: 2041; (b) Garrett BC, Truhlar DG (1979) J Phys Chem 83: 1052; (c) Garrett BC, Truhlar DG (1979) J Phys Chem 83: 1079

    Google Scholar 

  44. Skodje RT, Truhlar DG, Garrett BC (1982) J Chem Phys 77: 5955

    Article  CAS  Google Scholar 

  45. Marcus RA (1966) J Chem Phys 45: 4493

    Article  CAS  Google Scholar 

  46. Skodje RT, Garrett BC, Truhlar DG (1981) J Phys Chem 85: 3019

    Article  CAS  Google Scholar 

  47. Bondi DK, Connor JNL, Garrett BC, Truhlar DG (1983) J Chem Phys 78: 5981

    Article  CAS  Google Scholar 

  48. (a) Rice OK, Ramsperger HC (1928) J Am Chem Soc 50: 617; (b) Kassel LS (1928) J Phys Chem 32: 1065; (c) Marcus RA, Rice OK (1951) J Phys Colloid Chem 55: 894; (d) Marcus RA (1965) J Chem Phys 43: 2658

    Google Scholar 

  49. Truhlar DG, Kuppermann A (1972) J Chem Phys 56: 2232

    Article  CAS  Google Scholar 

  50. Schatz GC, Kuppermann A (1976) J Chem Phys 65: 4668

    Article  CAS  Google Scholar 

  51. Friedman RS, Truhlar DG (1999) In: Simon B, Truhlar DG (eds) Multiparticle quantum scattering with applications to nuclear, atomic, and molecular physics. Springer, Berlin Heidelberg New York

    Google Scholar 

  52. Diedrich DL, Anderson JB (1992) Science 258: 786

    Article  CAS  Google Scholar 

  53. Klopper W, Bak KL, Jorgensen P, Olsen J, Helgaker T (1999) J Phys B At Mol Opt Phys 32: R103

    Article  CAS  Google Scholar 

  54. Irikura KK, Frurip DJ (eds) (1998) Computational thermochemistry. ACS Symposium Series 677. American Chemical Society Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petersson, G.A. (2000). Perspective on “The activated complex in chemical reactions”. In: Cramer, C.J., Truhlar, D.G. (eds) Theoretical Chemistry Accounts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10421-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10421-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67867-0

  • Online ISBN: 978-3-662-10421-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics