Skip to main content

Wnt Signals and Antagonists: The Molecular Nature of Spemann’s Head Organizer

  • Chapter
The Vertebrate Organizer

Summary

The Spemann organizer regulates the formation of all embryonic axes — antero-posterior, dorso-ventral, left-right, and it does so in all vertebrates tested. A number of models has been proposed to account for initial antero-posterior (A-P) patterning, in particular of the early central nervous system, and while they differ in various aspects they all agree on the fact that the anterior and posterior Spemann organizer and their derivatives emit anteriorizing and posteriorizing factors, respectively, which specify positional information of adjacent tissues. Here I will review evidence that attributes a central role for Wnt/β-catenin signalling during early A-P patterning. A gradient of positional information of Wnt/β-catenin signalling with high levels posteriorly and low levels anteriorly regulates this patterning process. One of the functions of the Spemann organizer and its derivatives is to shape this gradient and to maintain low levels of Wnt/β-catenin signalling anteriorly by secreting a number of potent Wnt antagonists. Thus, the organizer creates signalling gradients of Wnts and bone morphogenetic proteins to pattern and integrate the main vertebrate body axes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agathon A, Thisse B, Thisse C (2001) Morpholino knock-down of antivin1 and antivin2 upregulates nodal signaling. Genesis 30: 178–182

    Article  PubMed  CAS  Google Scholar 

  • Agius E, Oelgeschlager M, Wessely O, Kemp C, de Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127: 1173–1183

    PubMed  CAS  Google Scholar 

  • Ang SL, Rossant J (1993) Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development 118: 139–149

    PubMed  CAS  Google Scholar 

  • Aybar MJ, Glavic A, Mayor R (2002) Extracellular signals, cell interactions and transcription factors involved in the induction of the neural crest cells. Biol Res 35: 267–275

    Article  PubMed  CAS  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J, de Robertis EM (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403: 658–661

    Article  PubMed  CAS  Google Scholar 

  • Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling in- hibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3: 683–686

    Article  PubMed  CAS  Google Scholar 

  • Barth KA, Kishimoto Y, Rohr KB, Seydler C, Schulte-Merker S, Wilson SW (1999) Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126: 4977–4987

    PubMed  CAS  Google Scholar 

  • Beck CW, Whitman M, Slack JM (2001) The role of BMP signaling in outgrowth and patterning of the Xenopus tail bud. Dev Biol 238: 303–314

    Article  PubMed  CAS  Google Scholar 

  • Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120: 613–620

    PubMed  CAS  Google Scholar 

  • Beddington RSP, Robertson EJ (1998) Anterior patterning in mouse. Trends Genet 14: 277–284

    Article  PubMed  CAS  Google Scholar 

  • Bertocchini F, Stern CD (2002) The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev Cell 3: 735–744

    Article  PubMed  CAS  Google Scholar 

  • Bhanot P, Brink M, Harryman Samos C, Hsieh J-C, Wang Y, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Blum M, Gaunt SJ, Cho KW, Steinbeisser H, Blumberg B, Bittner D, de Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69: 1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester T, Kim S, Sasai Y, Lu B, de Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601

    Article  PubMed  CAS  Google Scholar 

  • Bradley L, Wainstock D, Sive H (1996) Positive and negative signals modulate formation of the Xenopus cement gland. Development 122: 2739–2750

    PubMed  CAS  Google Scholar 

  • Bradley L, Sun B, Collins-Racie L, LaVallie E, McCoy J, Sive H (2000) Different activities of the frizzled-related proteins frzb2 and sizzled2 during Xenopus anteroposterior patterning. Dev Biol 227: 118–132

    Article  PubMed  CAS  Google Scholar 

  • Cadigan KM (2002) Regulating morphogen gradients in the Drosophila wing. Semin Cell Dev Biol 13: 83–90

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Hemmati-Brivanlou A (1998) Neural crest induction by Xwnt7B in Xenopus. Dev Biol 194: 129–134

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Schier AF (2001) The zebrafish Nodal signal Squint functions as a morphogen. Nature 411: 607–610

    Article  PubMed  CAS  Google Scholar 

  • Christian JL, Moon RT (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7: 13–28

    Article  PubMed  CAS  Google Scholar 

  • Ciruna B, Rossant J (2001) FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1: 37–49

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Brown JD, Moon RT, Christian JL (1995) Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis. Development 121: 2177–2186

    PubMed  CAS  Google Scholar 

  • Dale L, Wardle FC (1999) A gradient of BMP activity specifies dorsal-ventral fates in early Xenopus embryos. Semin Cell Dev Biol 10: 319–326

    Article  PubMed  CAS  Google Scholar 

  • Davidson G, Mao B, del Barco Barrantes I, Niehrs C (2002) Kremen proteins interact with Dickkopfl to regulate anteroposterior CNS patterning. Development 129: 5587–5596

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EM, Larrain J, Oelgeschlager M, Wessely 0 (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1: 171–181

    Article  CAS  Google Scholar 

  • Deardorff MA, Tan C, Conrad LJ, Klein PS (1998) Frizzled-8 is expressed in the Spemann organizer and plays a role in early morphogenesis. Development 125: 2687–2700

    PubMed  CAS  Google Scholar 

  • Domingos PM, Itasaki N, Jones CM, Mercurio S, Sargent MG, Smith JC, Krumlauf R (2001) The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev Biol 239: 148–160

    Article  PubMed  CAS  Google Scholar 

  • Doniach T (1995) Basic FGF as an inducer of anteroposterior neural pattern. Cell 83: 1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Dosch R, Niehrs C (2000) Requirement for anti-dorsalizing morphogenetic protein in organizer patterning. Mech Dev 90: 195–203

    Article  PubMed  CAS  Google Scholar 

  • Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C (1997) Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124: 2325–2334

    PubMed  CAS  Google Scholar 

  • Erter CE, Wilm TP, Basler N, Wright CV, Solnica-Krezel L (2001) Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128: 3571–3583

    PubMed  CAS  Google Scholar 

  • Faure S, de Santa Barbara P, Roberts DJ, Whitman M (2002) Endogenous patterns of BMP signaling during early chick development. Dev Biol 244: 44–65

    Article  PubMed  CAS  Google Scholar 

  • Foley AC, Skromne I, Stern CD (2000) Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127: 3839–3854

    PubMed  CAS  Google Scholar 

  • Fredieu JR, Cui Y, Maier D, Danilchik MV, Christian JL (1997) Xwnt-8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos. Dev Biol 186: 100–114

    Article  PubMed  CAS  Google Scholar 

  • Galceran J, Farinas I, Depew MJ, Clevers H, Grosschedl R (1999) Wnt3a a-like phenotype and limb deficiency in Lefl(-i-)Tcf1(i) mice. Genes Dev 13: 709–717

    Article  PubMed  CAS  Google Scholar 

  • Gamse J, Sive H (2000) Vertebrate anteroposterior patterning: the Xenopus neurectoderm as a paradigm. Bioessays 22: 976–986

    Article  PubMed  CAS  Google Scholar 

  • Gamse JT, Sive H (2001) Early anteroposterior division of the presumptive neurectoderm in Xenopus. Mech Dev 104: 21–36

    Article  PubMed  CAS  Google Scholar 

  • Gerhart J (2001) Evolution of the organizer and the chordate body plan. Int J Dev Biol 45: 133–53

    PubMed  CAS  Google Scholar 

  • Gilbert SF, Saxen L (1993) Spemann’s organizer: models and molecules. Mech Dev 41: 73–89

    Article  PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Onichtchouk D, Blumenstock C, Niehrs C (1997) Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389: 517–519

    Article  PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez EM, Fekany-Lee K, Carmany-Rampey A, Erter C, Topczewski J, Wright CV, SolnicaKrezel L (2000) Head and trunk in zebrafish arise via coinhibition of BMP signaling by bozozok and chordino. Genes Dev 14: 3087–3092

    Article  PubMed  CAS  Google Scholar 

  • Graff JM, Thies RS, Song JJ, Celeste AJ, Melton DA (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79: 169–179

    Article  PubMed  CAS  Google Scholar 

  • Greco TL, Takada S, Newhouse MM, McMahon JA, McMahon AP, Camper SA (1996) Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev 10: 313–324

    Article  PubMed  CAS  Google Scholar 

  • Grinblat Y, Gamse J, Patel M, Sive H (1998) Determination of the zebrafish forebrain: induction and patterning. Development 125: 4403–4416

    PubMed  CAS  Google Scholar 

  • Hamburger V (1988) The heritage of experimental embryology. Oxford University Press, New York

    Google Scholar 

  • Hamilton FS, Wheeler GN, Hoppler S (2001) Difference in XTcf-3 dependency accounts for change in response to beta-catenin-mediated Wnt signalling in Xenopus blastula. Development 128: 2063–2073

    PubMed  CAS  Google Scholar 

  • Harland RM (1994) Neural induction in Xenopus. Curr Opin Genet Dev 4: 543–549

    Article  PubMed  CAS  Google Scholar 

  • Harland RM, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Dev Biol 13: 611–667

    Article  CAS  Google Scholar 

  • Hashimoto H, Itoh M, Yamanaka Y, Yamashita S, Shimizu T, Solnica-Krezel L, Hibi M, Hirano T (2000) Zebrafish Dkkl functions in forebrain specification and axial mesendoderm formation. Dev Biol 217: 138–152

    Article  PubMed  CAS  Google Scholar 

  • Heasman J, Kofron M, Wylie C (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol 222: 124–134

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg CP, Houart C, Take-Uchi M, Rauch GJ, Young N, Coutinho P, Masai I, Caneparo L, Concha ML, Geisler R, Dale TC, Wilson SW, Stemple DL (2001) A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axinl leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev 15: 1427–1434

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Hoppler S, Brown JD, Moon RT (1996) Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev 10: 2805–2817

    Article  PubMed  CAS  Google Scholar 

  • Houart C, Caneparo L, Heisenberg C, Barth K, Take-Uchi M, Wilson S (2002) Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Hume CR, Dodd J (1993) Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development 119: 1147–1160

    PubMed  CAS  Google Scholar 

  • Itoh K, Tang TL, Neel BG, Sokol SY (1995) Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Development 121: 3979–3988

    PubMed  CAS  Google Scholar 

  • Jones CM, Smith JC (1998) Establishment of a BMP-4 morphogen gradient by long-range inhibition. Dev Biol 194: 12–17

    Article  PubMed  CAS  Google Scholar 

  • Kao KR, Elinson RP (1988) The entire mesodermal mantle behaves as Spemann’s organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev Biol 127: 64–77

    Article  PubMed  CAS  Google Scholar 

  • Kazanskaya O, Glinka A, Niehrs C (2000) The role of Xenopus dickkopfl in prechordal plate specification and neural patterning. Development 127: 4981–4992

    PubMed  CAS  Google Scholar 

  • Kelly GM, Greenstein P, Erezyilmaz DF, Moon RT (1995) Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121: 1787–1799

    PubMed  CAS  Google Scholar 

  • Kiecker C, Niehrs C (2001a) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128: 4189–4201

    PubMed  CAS  Google Scholar 

  • Kiecker C, Niehrs C (2001b) The role of prechordal mesendoderm in neural patterning. Curr Opin Neurobiol 11: 27–33

    Article  PubMed  CAS  Google Scholar 

  • Kim AS, Lowenstein DH, Pleasure SJ (2001) Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. Mech Dev 103: 167–172

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, Driever W, Chitnis AB (2000) Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407: 913–916

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Shin J, Park HC, Yeo SY, Hong SK, Han S, Rhee M, Kim CH, Chitnis AB, Huh TL (2002) Specification of an anterior neuroectoderm patterning by Frizzled8a-mediated Wnt8b signalling during late gastrulation in zebrafish. Development 129: 4443–4455

    PubMed  CAS  Google Scholar 

  • Kimura C, Yoshinaga K, Tian E, Suzuki M, Aizawa S, Matsuo I (2000) Visceral endoderm med- iates forebrain development by suppressing posteriorizing signals. Dev Biol 225: 304–321

    Article  PubMed  CAS  Google Scholar 

  • Kinder SJ, Tsang TE, Wakamiya M, Sasaki H, Behringer RR, Nagy A, Tam PP (2001) The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128: 3623–3634

    PubMed  CAS  Google Scholar 

  • Knecht A, Harland RM (1997) Mechanisms of dorsal-ventral paterning in noggin-induced neural tissue. Development 124: 2477–2488

    PubMed  CAS  Google Scholar 

  • Knoetgen H, Viebahn C, Kessel M (1999) Head induction in the chick by primitive endoderm of mammalian, but not avian origin. Development 126: 815–825

    PubMed  CAS  Google Scholar 

  • Koshida S, Shinya M, Mizuno T, Kuroiwa A, Takeda H (1998) Initial anteroposterior pattern of the zebrafish central nervous system is determined by differential competence of the epiblast. Development 125: 1957–1966

    PubMed  CAS  Google Scholar 

  • Koshida S, Shinya M, Nikaido M, Ueno N, Schulte-Merker S, Kuroiwa A, Takeda H (2002) Inhibition of BMP activity by the FGF signal promotes posterior neural development in zebra-fish. Dev Biol 244: 9–20

    Article  PubMed  CAS  Google Scholar 

  • Krull CE, Krumlauf R (2001) Building from the bottom up. Nat Cell Biol 3: E138 - E139

    Article  PubMed  CAS  Google Scholar 

  • Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K, Chang B, Duong T, Goodearl AD, Gearing DP, Sokol SY, McCarthy SA (1999) Functional and structural diversity of the human Dickkopf gene family. Gene 238: 301–313

    Article  PubMed  CAS  Google Scholar 

  • Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129: 4335–4346

    Google Scholar 

  • Kurata T, Nakabayashi J, Yamamoto TS, Mochii M, Ueno N (2001) Visualization of endogenous BMP signaling during Xenopus development. Differentiation 67: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Lekven AC, Thorpe CJ, Waxman JS, Moon RT (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1: 103–114

    Article  PubMed  CAS  Google Scholar 

  • Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88: 747–756

    Article  PubMed  CAS  Google Scholar 

  • Lickert H, Kutsch S, Kanzler B, Tamai Y, Taketo MM, Kemler R (2002) Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Dev Cell 3: 171–181

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22: 361–365

    Article  PubMed  CAS  Google Scholar 

  • Maden M (2002) Retinoid signalling in the development of the central nervous system. Nat Rev Neurosci 3: 843–853

    Article  PubMed  CAS  Google Scholar 

  • Mangold O (1933) Uber die Induktionsfahigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21: 761–766

    Article  Google Scholar 

  • Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411: 321–325

    Article  PubMed  CAS  Google Scholar 

  • Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler B, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002) Kremens are novel Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417: 664–667

    Article  PubMed  CAS  Google Scholar 

  • Mao J, Wang J, Liu B, Pan W, Farr GH, 3rd, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D (2001) Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell 7: 801–809

    Article  PubMed  CAS  Google Scholar 

  • Marchant L, Linker C, Ruiz P, Guerrero N, Mayor R (1998) The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev Biol 198: 319–329

    PubMed  CAS  Google Scholar 

  • Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15: 316–327

    Article  PubMed  CAS  Google Scholar 

  • Mathis L, Kulesa PM, Fraser SE (2001) FGF receptor signalling is required to maintain neural progenitors during Hensen’s node progression. Nat Cell Biol 3: 559–566

    Article  PubMed  CAS  Google Scholar 

  • McGrew LL, Lai CJ, Moon RT (1995) Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev Biol 172: 337–342

    Article  PubMed  CAS  Google Scholar 

  • McGrew LL, Hoppler S, Moon RT (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69: 105–114

    Article  PubMed  CAS  Google Scholar 

  • McGrew LL, Takemaru K, Bates R, Moon RT (1999) Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mech Dev 87: 21–32

    Article  PubMed  CAS  Google Scholar 

  • Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, Mochida K, Shimono A, Kondoh H, Talbot WS, Robertson EJ, Schier AF, Hamada H (1999) Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4: 287–298

    Article  PubMed  CAS  Google Scholar 

  • Miller JR, Hocking AM, Brown JD, Moon RT (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18: 7860–7872

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP, Niehrs C, Belmonte JC, Westphal H (2001) Dickkopfl is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1: 423–434

    Article  PubMed  CAS  Google Scholar 

  • Myers DC, Sepich DS, Solnica-Krezel L (2002) Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 18: 447–455

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C (1999) Head in the Wnt–the molecular nature of Spemann’s head organizer. Trends Genet 15: 314–319

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom U, Jessell TM, Edlund T (2002) Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci 5: 525–532

    Article  PubMed  Google Scholar 

  • Pandur P, Lasche M, Eisenberg LM, Kuhl M (2002) Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418: 636–641

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Reichardt LF (2000) Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol 10: 392–399

    Article  PubMed  CAS  Google Scholar 

  • Pera EM, Kessel M (1997) Patterning of the chick forebrain anlage by the prechordal plate. Development 124: 4153–4162

    PubMed  CAS  Google Scholar 

  • Pera E, Stein S, Kessel M (1999) Ectodermal patterning in the avian embryo: epidermis versus neural plate. Development 126: 63–73

    PubMed  CAS  Google Scholar 

  • Pera EM, De Robertis EM (2000) A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1. Mech Dev 96: 183–195

    Article  PubMed  CAS  Google Scholar 

  • Pera EM, Wessely O, Li SY, de Robertis EM (2001) Neural and head induction by insulin-like growth factor signals. Dev Cell 1: 655–665

    Article  PubMed  CAS  Google Scholar 

  • Perea-Gomez A, Vella FD, Shawlot W, Oulad-Abdelghani M, Chazaud C, Meno C, Pfister V, Chen L, Robertson E, Hamada H, Behringer RR, Ang SL (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3: 745–756

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707–710

    Google Scholar 

  • Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407: 535–538

    Article  PubMed  CAS  Google Scholar 

  • Pöpperl H, Schmidt C, Wilson V, Hume CR, Dodd J, Krumlauf R, Beddington RSP (1997) Mis-expression of Cwnt8c in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 124: 2997–3005

    PubMed  Google Scholar 

  • Pownall ME, Tucker AS, Slack JM, Isaacs HV (1996) eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 122: 3881–3892

    Google Scholar 

  • Rattner A, Hsieh J-C, Smallwood PM, Gilbert D, Copeland NG, Jenkins NA, Nathans J (1997) A family of secreted proteins contains homology to the cysteine-rich ligand binding domain of frizzled receptors. Proc Natl Acad Sci USA 94: 2859–2863

    Article  PubMed  CAS  Google Scholar 

  • Richard-Parpaillon L, Heligon C, Chesnel F, Boujard D, Philpott A (2002) The IGF pathway reg- ulates head formation by inhibiting Wnt signaling in Xenopus. Dev Biol 244: 407–417

    Article  PubMed  CAS  Google Scholar 

  • Roeser T, Stein S, Kessel M (1999) Nuclear beta-catenin and the development of bilateral symmetry in normal and LiCl-exposed chick embryos. Development 126: 2955–2965

    PubMed  CAS  Google Scholar 

  • Sagerstrom CG, Grinbalt Y, Sive H (1996) Anteroposterior patterning in the zebrafish, Danio rerio: an explant assay reveals inductive and suppressive cell interactions. Development 122: 1873–1883

    PubMed  CAS  Google Scholar 

  • Saint-Jeannet JP, He X, Varmus HE, Dawid IB (1997) Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc Natl Acad Sci USA 94: 13713–13718

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79: 779–790

    Google Scholar 

  • Saude L, Woolley K, Martin P, Driever W, Stemple DL (2000) Axis-inducing activities and cell fates of the zebrafish organizer. Development 127: 3407–3417

    PubMed  CAS  Google Scholar 

  • Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403: 385–389

    Article  PubMed  CAS  Google Scholar 

  • Schlange T, Andree B, Arnold HH, Brand T (2000) BMP2 is required for early heart development during a distinct time period. Mech Dev 91: 259–270

    Article  PubMed  CAS  Google Scholar 

  • Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15: 304–315

    Article  PubMed  CAS  Google Scholar 

  • Schohl A, Fagotto F (2002) Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129: 37–52

    PubMed  CAS  Google Scholar 

  • Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11: 451–462

    Article  PubMed  CAS  Google Scholar 

  • Sedohara A, Fukui A, Michiue T, Asashima M (2002) Role of BMP-4 in the inducing ability of the head organizer in Xenopus laevis. Zoolog Sci 19: 67–80

    Article  PubMed  CAS  Google Scholar 

  • Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11: 951–961

    Article  PubMed  CAS  Google Scholar 

  • Shih J, Fraser SE (1996) Characterizing the zebrafish organizer microsurgical analysis at the early-shield stage. Development 122: 1313–1322

    PubMed  CAS  Google Scholar 

  • Shinya M, Eschbach C, Clark M, Lehrach H, Furutani-Seiki M (2000) Zebrafish Dkkl, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech Dev 98: 3–17

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840

    Article  PubMed  CAS  Google Scholar 

  • Sokol S (2000) A role for Wnts in morpho-genesis and tissue polarity. Nat Cell Biol 2: E124 - E125

    Article  PubMed  CAS  Google Scholar 

  • Stern CD (2001) Initial patterning of the central nervous system: how many organizers? Nature Rev 2: 92–98

    Article  CAS  Google Scholar 

  • Storey KG, Crossley JM, de Robertis EM, Norris WE, Stern CD (1992) Neural induction and regionalisation in the chick embryo. Development 114: 729–741

    PubMed  CAS  Google Scholar 

  • Strigini M, Cohen SM (1999) Formation of morphogen gradients in the Drosophila wing. Semin Cell Dev Biol 10: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Stark KL, Shea MJ, Vassileva G, McMahon JA, McMahon AP (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8: 174–189

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Steiner KA (1999) Anterior patterning by synergistic activity of the early gastrula organizer and the anterior germ layer tissues of the mouse embryo. Development 126: 5171–5179

    PubMed  CAS  Google Scholar 

  • Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407: 530–535

    Article  PubMed  CAS  Google Scholar 

  • Tanegashima K, Yokota C, Takahashi S, Asashima M (2000) Expression cloning of Xantivin, a Xenopus lefty/antivin-related gene, involved in the regulation of activin signaling during mesoderm induction. Mech Dev 99: 3–14

    Article  PubMed  CAS  Google Scholar 

  • Thisse B, Wright CV, Thisse C (2000) Activin-and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403: 425–428

    Article  PubMed  CAS  Google Scholar 

  • Tiso N, Filippi A, Pauls S, Bortolussi M, Argenton F (2002) BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mech Dev 118: 29

    Article  PubMed  CAS  Google Scholar 

  • Tucker AS, Slack JM (1995) Tail bud determination in the vertebrate embryo. Curr Biol 5: 807–813

    Article  PubMed  CAS  Google Scholar 

  • Tzahor E, Lassar AB (2001) Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev 15: 255–260

    Article  PubMed  CAS  Google Scholar 

  • van de Water S, van de Wetering M, Joore J, Esseling J, Bink R, Clevers H, Zivkovic D (2001) Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development 128: 3877–3888

    PubMed  Google Scholar 

  • Wang S, Krinks M, Lin K, Luyten FP, Moos M Jr (1997a) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88: 757–766

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Krinks M, Moos MJ (1997b) Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts -3A, -5A, or -l1. Biochem Biophys Res Commun 236: 502–504

    Article  PubMed  CAS  Google Scholar 

  • Wehrli M, Dougan ST, Caldwell K, O’Keefe L, Schwartz S, Vaizel-Ohayon D, Schejter E, Tomlinson A, DiNardo S (2000) Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407: 527–530

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GN, Hamilton FS, Hoppler S (2000) Inducible gene expression in transgenic Xenopus embryos. Curr Biol 10: 849–852

    Article  PubMed  CAS  Google Scholar 

  • Wilson SW, Rubenstein JL (2000) Induction and dorsoventral patterning of the telencephalon. Neuron 28: 641–651

    Article  PubMed  CAS  Google Scholar 

  • Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14: 59–88

    Article  PubMed  CAS  Google Scholar 

  • Wolda SL, Moon RT (1992) Cloning and developmental expression in Xenopus laevis of seven additional members of the Wnt family. Oncogene 7: 1941–1947

    PubMed  CAS  Google Scholar 

  • Yamaguchi TP, Takada S, Yoshikawa Y, Wu N, McMahon AP (1999) T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13: 3185–3190

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto TS, Takagi C, Hyodo AC, Ueno N (2001) Suppression of head formation by Xmsx-1 through the inhibition of intracellular nodal signaling. Development 128: 2769–2779

    PubMed  CAS  Google Scholar 

  • Yasuo H, Lemaire P (2001) Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae. Development 128: 3783–3793

    PubMed  CAS  Google Scholar 

  • Zakin LD, Mazan S, Maury M, Martin N, Guenet JL, Brulet P (1998) Structure and expression of Wnt13, a novel mouse Wnt2 related gene. Mech Dev 73: 107–116

    Article  PubMed  CAS  Google Scholar 

  • Zoltewicz JS, Gerhart JC (1997) The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage. Dev Biol 192: 482–491

    Article  PubMed  CAS  Google Scholar 

  • Zorn AR, Butler K, Gurdon JB (1999) Anterior endomesoderm specification in Xenopus by Wnt/ beta-catenin and TGF-beta signalling pathways. Dev Biol 209: 282–297

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niehrs, C. (2004). Wnt Signals and Antagonists: The Molecular Nature of Spemann’s Head Organizer. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics