Skip to main content

Transcriptional Repression in Spemann’s Organizer and the Formation of Dorsal Mesoderm

  • Chapter
Book cover The Vertebrate Organizer

Abstract

The early events of vertebrate embryogenesis establish the three germ layers, endoderm, mesoderm and neuroectoderm, and interactions between these lineages, both before and during gastrulation, determine the body plan. Experiments in Xenopus laevis have identified a number of signaling pathways that can regulate mesoderm formation and patterning. These studies in Xenopus, as well as genetic experiments in the mouse and zebrafish, have established the importance of the Nodal, BMP, Wnt and FGF pathways in mesoderm formation and patterning (Harland and Gerhart 1997; Heasman 1997; De Robertis et al. 2000; Whitman 2001). However, the transcriptional programs that control the expression of these inducing factors and mediate specific cellular responses to pathway activation are not fully understood, and much remains to be learned about the mechanisms of mesodermal cell fate regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127: 1173–1183

    PubMed  CAS  Google Scholar 

  • Boterenbrood EC, Nieuwkoop PD (1973) The formation of the mesoderm in urodelean amphibians. V. Its regional induction by the endoderm. Roux Arch Entw Mech Org 173: 319–332

    Article  Google Scholar 

  • Brannon M, Kimelman D (1996) Activation of Siamois by the Wnt pathway. Dev Biol 180: 344–347

    Article  PubMed  CAS  Google Scholar 

  • Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in development and metabolism. Dev Biol 250: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Carnac G, Kodjabachian L, Gurdon JB, Lemaire P (1996) The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122: 3055–3065

    PubMed  CAS  Google Scholar 

  • Chen X, Rubock MJ, Whitman M (1996) A transcriptional partner for MAD proteins in TGF-beta signalling. Nature 383: 691–696

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389: 85–89

    Article  PubMed  CAS  Google Scholar 

  • Clements D, Friday RV, Woodland HR (1999) Mode of action of VegT in mesoderm and endoderm formation. Development 126: 4903–4911

    PubMed  CAS  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120: 1919–1928

    PubMed  CAS  Google Scholar 

  • Crease DJ, Dyson S, Gurdon JB (1998) Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Proc Natl Acad Sci USA 95: 4398–4403

    Article  PubMed  CAS  Google Scholar 

  • Dale L, Slack JMW (1987) Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100: 279–295

    PubMed  CAS  Google Scholar 

  • De Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann’s organizer and patterning of the vertebrate embryo. Nat Rev Genet 1: 171–181

    Article  PubMed  Google Scholar 

  • Dirksen ML, Jamrich M (1995) Differential expression of fork head genes during early Xenopus and zebrafish development. Dev Genet 17: 107–116

    Article  PubMed  CAS  Google Scholar 

  • Dottori M, Gross MK, Labosky P, Goulding M (2001) The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128: 4127–4138

    PubMed  CAS  Google Scholar 

  • Elinson EP, Kao KR (1989) The location of dorsal information in Frog early development. Dev Growth Differ 31: 423–430

    Article  Google Scholar 

  • Engleka MJ, Craig EJ, Kessler DS (2001) VegT activation of Soxl7 at the midblastula transition alters the response to Nodal signals in the vegetal endoderm domain. Dev Biol 237: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Fan MJ, Sokol SY (1997) A role for siamois in Spemann organizer formation. Development 124: 2581–2589

    PubMed  CAS  Google Scholar 

  • Faure S, Lee MA, Keller T, ten Dijke P, Whitman M (2000) Endogenous patterns of TGF13 super-family signaling during early Xenopus development. Development 127: 2917–2931

    PubMed  CAS  Google Scholar 

  • Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Germain S, Howell M, Esslemont GM, Hill CS (2000) Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev 14: 435–451

    PubMed  CAS  Google Scholar 

  • Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF (1999) The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97: 121–132

    Article  PubMed  CAS  Google Scholar 

  • Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA (2002) Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev 16: 2650–2661

    Article  PubMed  CAS  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13: 611–667

    Article  PubMed  CAS  Google Scholar 

  • Heasman J (1997) Patterning the Xenopus blastula. Development 124: 4179–4191

    PubMed  CAS  Google Scholar 

  • Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, Kintner C, Noro CY, Wylie C (1994) Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79: 791–803

    Article  PubMed  CAS  Google Scholar 

  • Horb ME, Thomsen GH (1997) A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Development 124: 1689–1698

    PubMed  CAS  Google Scholar 

  • Hyde CE, Old RW (2000) Regulation of the early expression of the Xenopus nodal-related 1 gene, Xnrl. Development 127: 1221–1229

    Google Scholar 

  • Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121: 3651–3662

    PubMed  CAS  Google Scholar 

  • Joseph EM, Melton DA (1997) Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer. Dev Biol 184: 367–372

    Article  PubMed  CAS  Google Scholar 

  • Kaestner KH, Knöchel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14: 142–146

    PubMed  CAS  Google Scholar 

  • Kaufmann E, Knöchel W (1996) Five years on the wings of fork head. Mech Dev 57: 3–20

    Article  PubMed  CAS  Google Scholar 

  • Kessler DS (1997) Siamois is required for formation of Spemann’s organizer. Proc Natl Acad Sci USA 94: 13017–13022

    Article  PubMed  CAS  Google Scholar 

  • Kessler DS, Melton DA (1994) Vertebrate embryonic induction: mesodermal and neural patterning. Science 266: 596–604

    Article  PubMed  CAS  Google Scholar 

  • Kimelman D, Christian JL, Moon RT (1992) Synergistic principles of development: overlapping patterning systems in Xenopus mesoderm induction. Development 116: 1–9

    PubMed  CAS  Google Scholar 

  • Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFI3 growth factors. Development 126: 5759–5770

    PubMed  CAS  Google Scholar 

  • Kos R, Reedy MV, Johnson RL, Erickson CA (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos. Development 128: 1467–1479

    PubMed  CAS  Google Scholar 

  • Labosky PA, Kaestner KH (1998) The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech Dev 76: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Lerchner W, Latinkic BV, Remade JE, Huylebroeck D, Smith JC (2000) Region-specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos. Development 127: 2729–2739

    PubMed  CAS  Google Scholar 

  • Lustig KD, Kroll KL, Sun EE, Kirschner MW (1996) Expression cloning of a Xenopus T-related gene ( Xombi) involved in mesodermal patterning and blastopore lip formation. Development 122: 4001–4012

    Google Scholar 

  • Mariani FV, Harland RM (1998) XBF-2 is a transcriptional repressor that converts ectoderm into neural tissue. Development 125: 5019–5031

    PubMed  CAS  Google Scholar 

  • Moon RT, Kimelman D (1998) From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 20: 536–545

    Article  PubMed  CAS  Google Scholar 

  • Nakamura O, Takasaki H (1970) Further studies on the differentiation capacity of the dorsal marginal zone in the morula of Triturus pyrrhogaster. Proc Jpn Acad 46: 700–705

    Google Scholar 

  • Nieuwkoop PD (1969a) The formation of mesoderm in urodelean amphibians. I. Induction by the endoderm. Roux Arch Entw Mech Org 162: 341–373

    Article  Google Scholar 

  • Nieuwkoop PD (1969b) The formation of the mesoderm in urodelean Amphibians. II. The origin of the dorso-ventral polarity of the mesoderm. Roux Arch Entw Mech Org 163: 298–315

    Article  Google Scholar 

  • Odenthal J, Nusslein-Volhard C (1998) Forkhead domain genes in zebrafish. Dev Genes Evol 208: 245–258

    Article  PubMed  CAS  Google Scholar 

  • Osada SI, Wright CV (1999) Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126: 3229–3240

    Google Scholar 

  • Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, de Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707–710

    Google Scholar 

  • Pohl BS, Knöchel W (2001) Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos. Mech Dev 103: 93–106

    Article  PubMed  CAS  Google Scholar 

  • Rebagliati MR, Toyama R, Haffter P, Dawid IB (1998) Cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci USA 95: 9932–9937

    Article  PubMed  CAS  Google Scholar 

  • Sasai N, Mizuseki K, Sasai Y (2001) Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128: 2525–2536

    PubMed  CAS  Google Scholar 

  • Schier AF, Shen MM (2000) Nodal signalling in vertebrate development. Nature 403: 385–389

    Article  PubMed  CAS  Google Scholar 

  • Smith WC, Harland RM (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67: 753–765

    Article  PubMed  CAS  Google Scholar 

  • Sokol S, Christian JL, Moon RT, Melton DA (1991) Injected wnt RNA induces a complete body axis in Xenopus embryos. Cell 67: 741–752

    Article  PubMed  CAS  Google Scholar 

  • Stennard F, Carnac G, Gurdon JB (1996) The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation. Development 122: 4179–4188

    Google Scholar 

  • Sutton J, Costa R, Klug M, Field L, Xu D, Largaespada DA, Fletcher CF, Jenkins NA, Copeland NG, Klemsz M, Hromas R (1996) Genesis, a winged helix transcriptional repressor with expression restricted to embryonic stem cells. J Biol Chem 271: 23126–23133

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto JI, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127: 5319–5329

    PubMed  CAS  Google Scholar 

  • Watabe T, Kim S, Candia A, Rothbacher U, Hashimoto C, Inoue K, Cho KW (1995) Molecular mechanisms of Spemann’s organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev 9: 3038–3050

    Article  PubMed  CAS  Google Scholar 

  • Whitman M (2001) Nodal signaling in early vertebrate embryos. Themes and variations. Dev Cell 1: 605–617

    Article  PubMed  CAS  Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1997) Vertebrate neural induction: inducers, inhibitors, and a new synthesis. Neuron 18: 699–710

    Article  PubMed  CAS  Google Scholar 

  • Yamagata M, Noda M (1998) The winged-helix transcription factor CWH-3 is expressed in developing neural crest cells. Neurosci Lett 249: 33–36

    Article  PubMed  CAS  Google Scholar 

  • Yasuo H, Lemaire P (1999) A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Curr Biol 9: 869–879

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, King ML (1996) Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development 122: 4119–4129

    Google Scholar 

  • Zhang J, Houston DW, King ML, Payne C, Wylie C, Heasman J (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94: 515–524

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yaklichkin, S., Steiner, A.B., Kessler, D.S. (2004). Transcriptional Repression in Spemann’s Organizer and the Formation of Dorsal Mesoderm. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics