Skip to main content

Formation of the Endoderm in Xenopus

  • Chapter
The Vertebrate Organizer

Abstract

Throughout most of the last century the study of the amphibian embryo was a dominant theme in embryology, the balance scarcely shifting until the fusion of molecular biology and Drosophila genetics and the introduction of targeted gene inactivation in mice. Within amphibian embryology the concept of the Organiser has been predominant. This was initially important in emphasising the importance of cell interactions in patterning the embryo, but it has somewhat skewed experiments and concepts towards a primacy of the dorsal tissues and particularly the head and brain. Part of the reason for this was heuristic; these structures are the most easily recognised, particularly without molecular markers. However, a second reason has perhaps been an unconscious focus on the region of the animal we find most interesting, i.e. the head and brain. This way of thinking about the embryo naturally led to the naming of the Nieuwkoop Centre, the part of the vegetal hemisphere which generates the Organiser, and hence the head, through sperm-directed redistribution of elements of the Wnt pathway (Gerhart et al. 1989). Of course, Nieuwkoop actually discovered that the vegetal pole generates a polarised signal that induces both the posterior and ventral mesoderm (Nieuwkoop 1969a,b, 1973). However, we have associated his name with what we find more interesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander J, Stainier DYR (1999) A molecular pathway leading to endoderm formation in zebra-fish. Curr Biol 9: 1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Brannon M, Kimelman D (1996) Activation of Siamois by the Wnt pathway. Dev. Biol. 180: 344347

    Google Scholar 

  • Casey ES, Tada M, Fairclough L, Wylie CC, Heasman J, Smith JC (1999) Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Development 126: 4193–4200

    Google Scholar 

  • Clements D, Woodland HR (2000) Changes in embryonic cell fate produced by expression of an endodermal transcription factor, Xsox17. Mech Dev 99: 65–70

    Article  PubMed  CAS  Google Scholar 

  • Clements D, Friday RV, Woodland HR (1999) Mode of action of VegT in mesoderm and endoderm formation. Development 126: 4903–4911

    PubMed  CAS  Google Scholar 

  • Clements D, Rex M, Woodland HR (2001) Initiation and early patterning of the endoderm. Int Rev Cytol 203: 383–446

    Article  PubMed  CAS  Google Scholar 

  • Clements D, Cameleyre I, Woodland HR (2002) Redundant early and overlapping larval roles of

    Google Scholar 

  • Xsox17 subgroup genes in Xenopus endoderm development. Mech Dev 120:337–348

    Google Scholar 

  • Cornell RA, Musci TJ, Kimelman D (1995) FGF is a prospective competence factor for early ac- tivin-type signals in Xenopus mesoderm induction. Development 121: 2429–2437

    PubMed  CAS  Google Scholar 

  • Dale L, Slack JMW (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99: 527–551

    PubMed  CAS  Google Scholar 

  • Darras S, Marikawa Y, Elinson RP, Lemaire P (1997) Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser. Development 124: 4275–4286

    PubMed  CAS  Google Scholar 

  • Dickmeis T, Mourrain P, Saint-Etienne L, Fischer N, Aanstad P, Clark M, Strahle U, Rosa F (2001) A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev 15: 1487–1492

    Google Scholar 

  • Ecochard V, Cayrol C, Rey S, Foulquier F, Caillol D, Lemaire P, Duprat AM (1998) A novel Xenopus Mix-like gene milk involved in the control of the endomesodermal fates. Development 125: 2577–2585

    PubMed  CAS  Google Scholar 

  • Eimon PM, Harland RM (2002) Effects of heterodimerization and proteolytic processing on Derriere and Nodal activity: implications for mesoderm induction in Xenopus. Development 129: 3089–3103

    PubMed  CAS  Google Scholar 

  • Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419: 304–308

    Article  PubMed  CAS  Google Scholar 

  • Engleka MJ, Craig EJ, Kessler DS (2001) VegT activation of Sox17 at the midblastula transition alters the response to nodal signals in the vegetal endoderm domain. Dev Biol 237: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T (2001) The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. Dev Biol 229: 287–306

    Article  PubMed  CAS  Google Scholar 

  • Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Feldman B, Dougan ST, Schier AF, Talbot WS (2000) Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Curr Biol 10: 531–534

    Article  PubMed  CAS  Google Scholar 

  • Gamer LW, Wright CVE (1995) Autonomous endodermal determination in Xenopus - Regulation of expression of the pancreatic gene Xlhbox-8. Dev Biol 171: 240–251

    Article  PubMed  CAS  Google Scholar 

  • Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107 [Suppl]: 37–51

    PubMed  Google Scholar 

  • Germain S, Howell M, Esslemont GM, Hill CS (2000) Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev 14: 435–451

    PubMed  CAS  Google Scholar 

  • Graff JM, Thies RS, Song JJ, Celeste AJ, Melton DA (1994) Studies with a Xenopus bmp receptor suggest that ventral mesoderm-inducing signals override dorsal signals in-vivo. Cell 79: 169179

    Google Scholar 

  • Grapin-Botton A, Melton DA (2000) Endoderm development–from patterning to organogenesis. Trends Genet 16: 124–130

    Article  PubMed  CAS  Google Scholar 

  • Green JBA, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71: 731–739

    Article  PubMed  CAS  Google Scholar 

  • Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127: 921–932

    PubMed  CAS  Google Scholar 

  • Gurdon JB, Lemaire P, Kato K (1993a) Community effects and related phenomena in development. Cell 75: 831–834

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB, Tiller E, Roberts J, Kato K (1993b) A community effect in muscle development. Curr Biol 3: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB, Harger P, Mitchell A, Lemaire P (1994) Activin signaling and response to a morpho-gen gradient. Nature 371: 487–492

    Article  PubMed  CAS  Google Scholar 

  • Harland R, Gerhart J (1997) Formation and function of Spemann’s organizer. Annu Rev Cell Dev Biol 13: 611–667

    Article  PubMed  CAS  Google Scholar 

  • Heasman J, Wessely 0, Langland R, Craig EJ, Kessler DS (2001) Vegetal localization of maternal mRNAs is disrupted by VegT depletion. Dev Biol 240: 377–386

    Article  PubMed  CAS  Google Scholar 

  • Hebrok M, Kim SK, Melton DA (1998) Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev 12: 1705–1713

    Article  PubMed  CAS  Google Scholar 

  • Henry GL, Melton DA (1998) Mixer, a homeobox gene required for endoderm development. Science 281: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Horb ME, Slack JMW (2001) Endoderm specification and differentiation in Xenopus embryos. Dev Biol 236: 330–343

    Article  PubMed  CAS  Google Scholar 

  • Hudson C, Clements D, Friday RV, Stott D, Woodland HR (1997) Xsoxl7a and -(3 mediate endoderm formation in Xenopus. Cell 91: 397–405

    Article  PubMed  CAS  Google Scholar 

  • Jones CM, Armes N, Smith JC (1996) Signalling by TGF-beta family members: short range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr Biol 6: 1468–1475

    Article  PubMed  CAS  Google Scholar 

  • Kavka AI, Green JBA (2000) Evidence for dual mechanisms of mesoderm establishment in Xe-nopus embryos. Dev Dyn 219: 77–83

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Trinh LA, Reiter JF, Alexander J, Yelon D, Stainier DYR (2000) The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev 14: 1279–1289

    PubMed  CAS  Google Scholar 

  • Kikuchi Y, Agathon A, Alexander J, Thisse C, Waldron S, Yelon D, Thisse B, Stainier DYR (2001) Casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 15: 1493–1505

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Hebrok M, Melton DA (1997) Notochord to endoderm signaling is required for pancreas development. Development 124: 4243–4252

    PubMed  CAS  Google Scholar 

  • Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGF beta growth factors. Development 126: 5759–5770

    PubMed  CAS  Google Scholar 

  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Laurent MN, Blitz IL, Hashimoto C, Rothbacher U, Cho KWY (1997) The Xenopus homeobox gene Twin mediates Wnt induction of Goosecoid in establishment of Spemann’s organizer. Development 124: 4905–4916

    PubMed  CAS  Google Scholar 

  • Lee YJ, Swencki B, Shoichet S, Shivdasani RA (1999) A possible role for the high mobility group box transcription factor Tcf-4 in vertebrate gut epithelial cell differentiation. J Biol Chem 274: 1566–1572

    Article  PubMed  CAS  Google Scholar 

  • Lemaire P, Darras S, Caillol D, Kodjabachian L (1998) A role for the vegetally expressed Xenopus gene Mix.l in endoderm formation and in the restriction of mesoderm to the marginal zone. Development 125: 2371–2380

    PubMed  CAS  Google Scholar 

  • Medina A, Wendler SR, Steinbeisser H (1997) Cortical rotation is required for the correct spatial expression of nr3, sia and gsc in Xenopus embryos. Int J Dev Biol 41: 741–745

    PubMed  CAS  Google Scholar 

  • Moody SA (1987) Fates of the blastomeres of the 32-cell stage Xenopus embryo. Dev Biol 122: 300319

    Google Scholar 

  • Nieuwkoop PD (1969a) The formation of the mesoderm in urodele amphibians. I. Induction by the endoderm. Wilhelm Roux Arch Entwicklungsmech Org 162: 341–373

    Article  Google Scholar 

  • Nieuwkoop PD (1969b) The formation of the mesoderm in urodele amphibians. II. The origin of the dorso-ventral polarity of the mesooderm. Wilhelm Roux Arch Entwicklungsmech Org 163: 298–315

    Article  Google Scholar 

  • Nieuwkoop PD (1973) The “organisation centre” of the amphibian embryo: its origin, spatial organisation and morphogenetic action. Adv Morphogenet 10: 1–310

    CAS  Google Scholar 

  • Okada TS (1960) Epithelio-mesenchymal relationships in the regional differentiation of the digestive tract in the amphibian embryo. Roux’ Arch Entwick 152: 1–21

    Article  Google Scholar 

  • Osada SI, Wright CVE (1999) Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126: 3229–3240

    Google Scholar 

  • Piccolo S (1999) Molecular mechanisms of forebrain induction: the role of cerberus protein. J Neurochem 73: S56

    Google Scholar 

  • Poulain M, Lepage T (2002) Mezzo, a paired-like homeobox protein, is an immediate target of Nodal signalling and regulates endoderm specification in zebrafish. Development 129: 49014914

    Google Scholar 

  • Randall RA, Germain S, Inman GJ, Bates PA, Hill CS (2002) Different Smad2 partners bind a common hydrophobic pocket in Smad2 via a defined proline-rich motif. EMBO J 21: 145–156

    Article  PubMed  CAS  Google Scholar 

  • Reiter JF, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, Stainier DYR (1999) Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13: 29832995

    Google Scholar 

  • Reiter JF, Kikuchi Y, Stainier DYR (2001) Multiple roles for Gata5 in zebrafish endoderm formation. Development 128: 125–135

    PubMed  CAS  Google Scholar 

  • Rex M, Hilton E, Old R (2002) Multiple interactions between maternally-activated signalling pathways control Xenopus nodal-related genes. Int J Dev Biol 46: 217–226

    PubMed  CAS  Google Scholar 

  • Rodaway A, Takeda H, Koshida S, Broadbent J, Price B, Smith JC, Patient R, Holder N (1999) Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126: 30673078

    Google Scholar 

  • Rosa FM (1989) Mix.1,a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 57:965–958

    Google Scholar 

  • Saka Y, Tada M, Smith JC (2000) A screen for targets of the Xenopus T-box gene Xbra. Mech Dev 93: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi T, Kuroiwa A, Takeda H (2001) A novel sox gene, 226D7, acts downstream of Nodal signaling to specify endoderm precursors in zebrafish. Mech Dev 107: 25–38

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Merker S, Smith JC, Dale L (1994) Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVgl and activin: does activin play a role In mesoderm induction. EMBO J 13: 3533–3541

    PubMed  CAS  Google Scholar 

  • Slack JMW (1991) The nature of the mesoderm-inducing signal in Xenopus - a transfilter induction study. Development 113: 661–669

    PubMed  CAS  Google Scholar 

  • Sun BI, Bush SM, Collins-Racie LA, LaVallie ER, DiBlasioSmith EA, Wolfman NM, McCoy JM, Sive HL (1999) Derriere: a TGF-beta family member required for posterior development in Xenopus. Development 126: 1467–1482

    PubMed  CAS  Google Scholar 

  • Tada M, Casey ES, Fairclough L, Smith JC (1998) Bixl, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm. Development 125: 3997–4006

    Google Scholar 

  • Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto JI, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127: 5319–5329

    PubMed  CAS  Google Scholar 

  • Weber H, Symes CE, Walmsley ME, Rodaway ARF, Patient RK (2000) A role for GATA5 in Xenop us endoderm specification. Development 127: 4345–4360

    PubMed  CAS  Google Scholar 

  • Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15: 393410

    Google Scholar 

  • Wessely O, de Robertis EM (2000) The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation. Development 127: 2053–2062

    PubMed  CAS  Google Scholar 

  • White RJ, Sun BI, Sive HL, Smith JC (2002) Direct and indirect regulation of derriere, a Xenopus mesoderm-inducing factor, by VegT. Development 129: 4867–4876

    PubMed  CAS  Google Scholar 

  • Wilson PA, Lagna G, Suzuki A, Hemmati-Brivanlou A (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer smadl. Development 124: 3177–3184

    PubMed  CAS  Google Scholar 

  • Wittbrodt J, Rosa FM (1994) Disruption of mesoderm and axis formation in fish by ectopic ex-pression of activin variants–the role of maternal activin. Genes Dev 8: 1448–1462

    Article  PubMed  CAS  Google Scholar 

  • Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128:167–180

    Google Scholar 

  • Yasuo H, Lemaire P (1999) A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Curr Biol 9: 869–879

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Houston DW, King ML, Payne C, Wylie C, Heasman J (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94: 515–524

    Article  PubMed  CAS  Google Scholar 

  • Zhou XL, Sasaki H, Lowe L, Hogan BLM, Kuehn MR (1993) Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361: 543–547

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woodland, H.R., Clements, D. (2004). Formation of the Endoderm in Xenopus . In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics