Formation and Function of the Mouse Organizer

  • Luc Leyns
  • Caroline R. Kemp


After Spemann and Mangold’s discovery of a gastrula organizer in the salamander, the question of the existence of an organizer in other vertebrate gastrula was raised. Because of it size and implantation in the uterus, technical difficulties have hindered experiments to study in detail the mammalian embryo. Recently, much light has been shed on this topic, leading to the identification of a gastrula organizer and an anterior signalling center. The gastrula organizer is homologous to the Spemann-Mangold trunk-tail organizer while the anterior signalling center is required together with the organizer to induce a complete secondary axis. In this chapter, we will address the location and activities of the signalling centers and molecules in the mammalian, mostly murine, gastrula.


Primitive Streak Secondary Axis Mouse Organizer Visceral Endoderm Primitive Endoderm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J, de Robertis EM (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403: 658–661PubMedCrossRefGoogle Scholar
  2. Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120: 613–620PubMedGoogle Scholar
  3. Beddington RS, Robertson EJ (1998) Anterior patterning in mouse. Trends Genet 14: 277–284PubMedCrossRefGoogle Scholar
  4. Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96: 195–209PubMedCrossRefGoogle Scholar
  5. Belaoussoff M, Farrington SM, Baron MH (1998) Hematopoietic induction and respecification of A-P identity by visceral endoderm signalling in the mouse embryo. Development 125: 5009–5018PubMedGoogle Scholar
  6. Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Follettie M, de Robertis EM (1997) Cerberus-like is a secreted factor with neutralizing activity in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68: 45–57PubMedCrossRefGoogle Scholar
  7. Belo JA, Bachiller D, Agius E, Kemp C, Borges AC, Marques S, Piccolo S, de Robertis EM (2000) Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26: 265–270PubMedCrossRefGoogle Scholar
  8. Blum M, Gaunt SJ, Cho KW, Steinbeisser H, Blumberg B, Bittner D, de Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69: 1097–106PubMedCrossRefGoogle Scholar
  9. Bouwmeester T (2001) The Spemann-Mangold organizer: the control of fate specification and morphogenetic rearrangements during gastrulation in Xenopus. Int J Dev Biol 45: 251–258PubMedGoogle Scholar
  10. Bouwmeester T, Kim S, Sasai Y, Lu B, de Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601PubMedCrossRefGoogle Scholar
  11. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411: 965–969PubMedCrossRefGoogle Scholar
  12. Cho KW, Blumberg B, Steinbeisser H, De Robertis EM (1991) Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67: 1111–1120PubMedCrossRefGoogle Scholar
  13. Clegg KB, Piko L (1983) Poly(A) length, cytoplasmic adenylation and synthesis of poly(A)+RNA in early mouse embryos. Dev Biol 95: 331–341PubMedCrossRefGoogle Scholar
  14. Coucouvanis E, Martin GR (1999) BMP signalling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development 126: 535–546PubMedGoogle Scholar
  15. Ding J, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, Shen MM (1998) Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395: 702–707PubMedCrossRefGoogle Scholar
  16. Gluecksohn-Schoenheimer S (1949) The effects of a lethal mutation responsible for duplications and twinning in mouse embryos. J Exp Zool 110: 47–76PubMedCrossRefGoogle Scholar
  17. Harvey MA, Huntley RM, Smith DW (1977) Familial monozygotic twinning. J Pediatr 90: 246–247PubMedCrossRefGoogle Scholar
  18. Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W (2000) Requirement for beta-catenin in anterior-posterior axis. J Cell Biol 148: 567–578PubMedCrossRefGoogle Scholar
  19. Kaufman MH, O’Shea KS (1978) Induction of monozygotic twinning in the mouse. Nature 276: 707–708PubMedCrossRefGoogle Scholar
  20. Kimura C, Yoshinaga K, Tian E, Suzuki M, Aizawa S, Matsuo I (2000) Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev Biol 225: 304–321PubMedCrossRefGoogle Scholar
  21. Knoetgen H, Teichmann U, Wittier L, Viebahn C, Kessel M (2000) Anterior neural induction by nodes from rabbits and mice. Dev Biol 225: 370–380PubMedCrossRefGoogle Scholar
  22. Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22: 361–365PubMedCrossRefGoogle Scholar
  23. Martinez-Barbera JP, Beddington RS (2001) Getting your head around Hex and Hesxl: forebrain formation in mouse. Int J Dev Biol 45: 327–336PubMedGoogle Scholar
  24. Patterson JT (1913) Polyembryonic development in Tastusia novemcincta. J Morphol 24: 359–424CrossRefGoogle Scholar
  25. Perea-Gomez A, Vella FD, Shawlot W, Oulad-Abdelghani M, Chazaud C, Meno C, Pfister V, Chen L, Robertson E, Hamada H, Behringer RR, Ang SL (2002) Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev Cell 3: 745–756PubMedCrossRefGoogle Scholar
  26. Popperl H, Schmidt C, Wilson V, Hume CR, Dodd J, Krumlauf R, Beddington RS (1997) Mis-expression of Cwnt8C in the mouse induces an ectopic embryonic axis and causes a truncation of the anterior neuroectoderm. Development 124: 2997–3005PubMedGoogle Scholar
  27. Prodohl PA, Loughry WJ, McDonough CM, Nelson WS, Avise JC (1996) Molecular documentation of polyembryony and the micro-spatial dispersion of clonal sibships in the nine-banded armadillo, Dasypus novemcinctus. Proc R Soc Lond B Biol Sci 263: 1643–1649CrossRefGoogle Scholar
  28. Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the pre-implantation embryo. Hum Reprod Update 8: 323–331PubMedCrossRefGoogle Scholar
  29. Shapiro LR, Zemek L, Shulman MJ (1978) Genetic etiology for monozygotic twinning. Birth Defects Orig Artic Ser 14: 219–222PubMedGoogle Scholar
  30. Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374: 425–430PubMedCrossRefGoogle Scholar
  31. Spemann H (1938) Embryonic development and induction. Silliman Lectures. Yale University Press, New HavenGoogle Scholar
  32. Talmage RV, Dale Buchanan G (1954) The armadillo (Dasypus novemcinctus): a review of its natural history, ecology, anatomy and reproductive physiology. The Rice Institute pamphlet, vol XLI/2. Rice Institute, Houston, TexasGoogle Scholar
  33. Tam PP, Behringer RR (1997) Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68: 3–25PubMedCrossRefGoogle Scholar
  34. Tam PP, Steiner KA (1999) Anterior patterning by synergistic activity of the early gastrula organizer and the anterior germ layer tissues of the mouse embryo. Development 126: 5171–5179PubMedGoogle Scholar
  35. Tam PP, Steiner KA, Zhou SX, Quinlan GA (1997) Lineage and functional analyses of the mouse organizer. Cold Spring Harb Symp Quant Biol 62: 135–144PubMedCrossRefGoogle Scholar
  36. Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6: 1487–1496PubMedCrossRefGoogle Scholar
  37. Varlet I, Collignon J, Robertson EJ (1997) Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124: 1033–1044PubMedGoogle Scholar
  38. Waddington CH (1934) Experiments on embryonic induction. J Exp Biol XI /3: 211–227Google Scholar
  39. Waddington CH (1937) Experiments on determination in the rabbit embryo. Arch Biol 48:273-, 290Google Scholar
  40. Whitman M (2001) Nodal signalling in early vertebrate embryos: themes and variations. Dev Cell 1: 605–617PubMedCrossRefGoogle Scholar
  41. Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL III, Lee JJ, Tilghman SM, Gumbiner BM, Costantini F (1997) The mouse Fused locus encodes Axin, an inhibitor of the Wnt signalling pathway that regulates embryonic axis formation. Cell 90: 181–192PubMedCrossRefGoogle Scholar
  42. Zernicka-Goetz M (2002) Patterning of the embryo: the first spatial decisions in the life of a mouse. Development 129: 815–829PubMedGoogle Scholar
  43. Zhao GQ (2003) Consequences of knocking out BMP signalling in the mouse. Genesis 35: 43–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Luc Leyns
  • Caroline R. Kemp
    • 1
  1. 1.Laboratory for Cell GeneticsVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations