Skip to main content

Formation and Functions of the Gastrula Organizer in Zebrafish

  • Chapter
  • 156 Accesses

Abstract

The use of amphibian embryos in experimental embryology has a rich history dating back to the late nineteenth century. Manipulations that are possible in certain salamander and frog embryos due to their large size led to the discovery of the dorsal lip as Spemann’s organizer, also known as the gastrula organizer (Spemann and Mangold 1924). Transplantation of the dorsal lip to the ventral side of the amphibian embryo yields a duplicated body axis. While not as famous as the amphibian history in experimental embryology, work using fish does have a proud track record. Early experimental work predominantly used Fundulus heteroclitus, commonly known as the killifish or mummichog, because of the large size of its embryos (~1.8 mm) that lends itself to experimental manipulations. Recent experimental and genetic work has turned to zebrafish (Danio rerio). Experimental manipulations combined with modern genetic techniques have complemented and expanded our understanding of organizer development derived from amphibian work. In this chapter, we will provide a brief history of observations and classical experimental manipulations concerning the teleost gastrula organizer. We shall then move onto more recent experiments that define the nature of the teleost organizer and how it is formed. Finally, we will describe molecules, many of which were identified through the characterization of zebrafish mutants, which are involved in organizer formation and function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barth KA, Kishimoto Y, Rohr KB, Seydler C, Schulte-Merker S, Wilson SW (1999) Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126: 4977–4987

    PubMed  CAS  Google Scholar 

  • Bauer H, Lele Z, Rauch GJ, Geisler R, Hammerschmidt M (2001) The type I serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction during dorsoventral patterning of the zebrafish embryo. Development 128: 849–858

    PubMed  CAS  Google Scholar 

  • Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11: 2359–2370

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Kimelman D (2000) The role of the yolk syncytial layer in germ layer patterning in zebra-fish. Development 127: 4681–4689

    PubMed  CAS  Google Scholar 

  • Chen Y, Schier AF (2001) The zebrafish Nodal signal Squint functions as a morphogen. Nature 411: 607–610

    Article  PubMed  CAS  Google Scholar 

  • Christian J, Moon RT (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7: 13–28

    Article  PubMed  CAS  Google Scholar 

  • Clapp CM (1891) Some points in the development of the toadfish (Batrachus tau). J Morphol 5: 494–501

    Article  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120: 1919–1928

    PubMed  CAS  Google Scholar 

  • Dick A, Hild M, Bauer H, Imai Y, Maifeld H, Schier AF, Talbot WS, Bouwmeester T, Hammerschmidt M (2000) Essential role of Bmp? (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127: 343–354

    PubMed  CAS  Google Scholar 

  • Elinson RP, Rowning B (1988) A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Erter CE, Wilm TP, Basler N, Wright CV, Solnica-Krezel L (2001) Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128: 3571–3583

    PubMed  CAS  Google Scholar 

  • Fekany K, Yamanaka Y, Leung T, Sirotkin HI, Topczewski J, Gates MA, Hibi M, Renucci A, Stemple D, Radbill A et al (1999) The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126: 1427–1438

    PubMed  CAS  Google Scholar 

  • Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395: 181–185

    Article  PubMed  CAS  Google Scholar 

  • Feldman B, Dougan ST, Schier AF, Talbot WS (2000) Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Curr Biol 10: 531–534

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez EM, Fekany-Lee K, Carmany-Rampey A, Erter C, Topczewski J, Wright CV, SolnicaKrezel L (2000) Head and trunk in zebrafish arise via coinhibition of BMP signaling by bozozok and chordino. Genes Dev 14: 3087–3092

    Article  PubMed  CAS  Google Scholar 

  • Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127: 921–932

    PubMed  CAS  Google Scholar 

  • Hashimoto H, Itoh M, Yamanaka Y, Yamashita S, Shimizu T, Solnica-Krezel L, Hibi M, Hirano T (2000) Zebrafish Dkkl functions in forebrain specification and axial mesendoderm formation. Dev Biol 217: 138–152

    Article  PubMed  CAS  Google Scholar 

  • Ho CY, Houart C, Wilson SW, Stainier DY (1999) A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr Biol 9: 1131–1134

    Article  PubMed  CAS  Google Scholar 

  • Hoppler S, Moon RT (1998) BMP-2/-4 and Wnt-8 cooperatively pattern the Xenopus mesoderm. Mech Dev 71: 119–129

    Article  PubMed  CAS  Google Scholar 

  • Houart C, Caneparo L, Heisenberg C, Barth K, Take-Uchi M, Wilson S (2002) Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35: 255

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Gates MA, Melby AE, Kimelman D, Schier AF, Talbot WS (2001) The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish. Development 128: 24072420

    Google Scholar 

  • Jesuthasan S, Stahle U (1997) Dynamic microtubules and specification of the zebrafish embryonic axis. Curr Biol 7: 31–42

    Article  PubMed  CAS  Google Scholar 

  • Kazanskaya O, Glinka A, Niehrs C (2000) The role of Xenopus dickkopfl in prechordal plate specification and neural patterning. Development 127: 4981–4992

    PubMed  CAS  Google Scholar 

  • Kelly C, Chin AJ, Leatherman JL, Kozlowski DJ, Weinberg ES (2000) Maternally controlled (beta)catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127: 3899–3911

    PubMed  CAS  Google Scholar 

  • Kelly GM, Erezyilmaz DF, Moon RT (1995) Induction of a secondary embryonic axis in zebrafish occurs following the overexpression of beta-catenin. Mech Dev 53: 261–273

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Law RD (1985) Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Dev Biol 108: 78–85

    Google Scholar 

  • Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124: 4457–4466

    PubMed  CAS  Google Scholar 

  • Kodjabachian L, Dawid IB, Toyama R (1999) Gastrulation in zebrafish: what mutants teach us. Dev Biol 213: 231–245

    Article  PubMed  CAS  Google Scholar 

  • Koshida S, Shinya M, Mizuno T, Kuroiwa A, Takeda H (1998) Initial anteroposterior pattern of the zebrafish central nervous system is determined by differential competence of the epiblast. Development 125: 1957–1966

    PubMed  CAS  Google Scholar 

  • Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT (1997) Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 136: 1123–1136

    Article  PubMed  CAS  Google Scholar 

  • Lekven AC, Helde KA, Thorpe CJ, Rooke R, Moon RT (2000) Reverse genetics in zebrafish. Physiol Genom 2: 37–48

    CAS  Google Scholar 

  • Lekven AC, Thorpe CJ, Waxman JS, Moon RT (2001) Zebrafish wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Dev Cell 1: 103–114

    Article  PubMed  CAS  Google Scholar 

  • Lele Z, Nowak M, Hammerschmidt M (2001) Zebrafish admp is required to restrict the size of the organizer and to promote posterior and ventral development. Dev Dyn 222: 681–687

    Article  PubMed  CAS  Google Scholar 

  • Lereboullet A (1863) Recherches sur les monstruosites du Brochet observees dans l’oeuf et sur leur mode de production. Premiere memoire. Partie descriptive. Ann Sci Nat 20: 177–271

    Google Scholar 

  • Long WL (1983) The role of the yolk syncytial layer in determination of the plane of bilateral symmetry in the rainbow trout, Salmo gairdneri Richardson. J Exp Zool 228: 91–97

    Article  Google Scholar 

  • Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001) LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature 411: 321–325

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Moon RT (1989) Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58: 1075–1084

    Article  PubMed  CAS  Google Scholar 

  • Melby AE, Warga RM, Kimmel CB (1996) Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122: 2225–2237

    PubMed  CAS  Google Scholar 

  • Melby AE, Beach C, Mullins M, Kimelman D (2000) Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Dev Biol 224: 275–285

    Article  PubMed  CAS  Google Scholar 

  • Miller JR, Rowning BA, Larabell CA, Yang-Snyder JA, Bates RL, Moon RT (1999) Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J Cell Biol 146: 427–437

    Article  PubMed  CAS  Google Scholar 

  • Miller-Bertoglio VE, Fisher S, Sanchez A, Mullins MC, Halpern ME (1997) Differential regulation of chordin expression domains in mutant zebrafish. Dev Biol 192: 537–550

    Article  PubMed  CAS  Google Scholar 

  • Miller-Bertoglio V, Carmany-Rampey A, Furthauer M, Gonzalez EM, Thisse C, Thisse B, Halpern ME, Solnica-Krezel L (1999) Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. Dev Biol 214: 72–86

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Yamaha E, Masami W, Atsushi K, Hiroyuki T (1996) Mesoderm induction in zebrafish. Nature 383: 131–132

    Article  CAS  Google Scholar 

  • Mizuno T, Yamaha E, Yamazaki F (1997) Localized axis determinant in the early cleavage embryo of the goldfish, Carassius auratus. Dev Genes Evol 206: 389–396

    Article  Google Scholar 

  • Moon RT, Kimelman D (1998) From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 20: 536–545

    Article  PubMed  CAS  Google Scholar 

  • Morgan TH (1895) The formation of the fish embryo. J Morphol 10: 419–472

    Article  Google Scholar 

  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP et al (2001) Dickkopfl is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1: 423–434

    Article  PubMed  CAS  Google Scholar 

  • Ober EA, Schulte-Merker S (1999) Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev Biol 215: 167–181

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer JM (1936a) Transplantation experiments on developing teleosts (Fundulus and Perca). J Exp Zool 72: 409–437

    Article  Google Scholar 

  • Oppenheimer JM (1936b) The development of isolated blastoderms of Fundulus heteroclitus. J Exp Zool 72: 247–269

    Article  Google Scholar 

  • Oppenheimer JM (1936c) Structures developed in amphibians by implantation of living fish organizer. Proc Soc Exp Biol Med 34: 461–463

    Google Scholar 

  • Osada SI, Saijoh Y, Frisch A, Yeo CY, Adachi H, Watanabe M, Whitman M, Hamada H, Wright CV (2000) Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127: 2503–2514

    PubMed  CAS  Google Scholar 

  • Rowning BA, Wells J, Wu M, Gerhart JC, Moon RT, Larabell CA (1997) Microtubule-mediated transport of organelles and localization of beta-catenin to the future dorsal side of Xenopus eggs. Proc Natl Acad Sci USA 94: 1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Ryu SL, Fujii R, Yamanaka Y, Shimizu T, Yabe T, Hirata T, Hibi M, Hirano T (2001) Regulation of dharma/bozozok by the Wnt pathway. Dev Biol 231: 397–409

    Article  PubMed  CAS  Google Scholar 

  • Saude L, Woolley K, Martin P, Driever W, Stemple DL (2000) Axis-inducing activities and cell fates of the zebrafish organizer. Development 127: 3407–3417

    PubMed  CAS  Google Scholar 

  • Schier AF (2001) Axis formation and patterning in zebrafish. Curr Opin Genet Dev 11: 393–404

    Article  PubMed  CAS  Google Scholar 

  • Schier AF, Talbot WS (1998) The zebrafish organizer. Curr Opin Genet Dev 8: 464–471

    Article  PubMed  CAS  Google Scholar 

  • Schier AF, Talbot WS (2001) Nodal signaling and the zebrafish organizer Int J Dev Biol 45: 289–297

    CAS  Google Scholar 

  • Schmid B, Furthauer M, Connors SA, Trout J, Thisse B, Thisse C, Mullins MC (2000) Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127: 957–967

    PubMed  CAS  Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57: 191–198

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Merker S, Lee KJ, McMahon AP, Hammerschmidt M (1997) The zebrafish organizer requires chordino. Nature 387: 862–863

    Article  PubMed  CAS  Google Scholar 

  • Shih J, Fraser SE (1996) Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122: 1313–1322

    PubMed  CAS  Google Scholar 

  • Shimizu T, Yamanaka Y, Ryu SL, Hashimoto H, Yabe T, Hirata T, Bae YK, Hibi M, Hirano T (2000) Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech Dev 91: 293–303

    Article  PubMed  CAS  Google Scholar 

  • Shinya M, Eschbach C, Clark M, Lehrach H, Furutani-Seiki M (2000) Zebrafish Dkkl, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech Dev 98: 3–17

    Article  PubMed  CAS  Google Scholar 

  • Sirotkin HI, Dougan ST, Schier AF, Talbot WS (2000) bozozok and squint act in parallel to specify dorsal mesoderm and anterior neuroectoderm in zebrafish. Development 127: 2583–2592

    Google Scholar 

  • Solnica-Krezel L, Driever W (1994) Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120: 2443–2455

    PubMed  CAS  Google Scholar 

  • Spemann H, Mangold H (1924) Über die Induktion von Embryoanalangen durch Inplantation artfremder Organisatoren. Roux Arch Entw Mech Org 100: 599–638

    Google Scholar 

  • Strahle U, Jesuthasan S (1993) Ultraviolet irradiation impairs epiboly in zebrafish embryos: evi- dence for a microtubule-dependent mechanism of epiboly. Development 119: 909–919

    PubMed  CAS  Google Scholar 

  • Sumoy L, Kiefer J, Kimelman D (1999) Conservation of intracellular Wnt signaling components in dorsal-ventral axis formation in zebrafish. Dev Genes Evol 209: 48–58

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127: 5319–5329

    PubMed  CAS  Google Scholar 

  • Trinkaus JP (1996) Ingression during early gastrulation of Fundulus. Dev Biol 177:356–370 Trinkaus JP (1998) Gradient in convergent cell movement during Fundulus gastrulation. J Exp Zool 281: 328–335

    Article  Google Scholar 

  • Trinkaus JP, Trinkaus M, Fink RD (1992) On the convergent cell movements of gastrulation in Fundulus. J Exp Zool 261: 40–61

    Article  PubMed  CAS  Google Scholar 

  • Wagner DS, Mullins MC (2002) Modulation of BMP activity in dorsal-ventral pattern formation by the chordin and ogon antagonists. Dev Biol 245: 109–123

    Article  PubMed  CAS  Google Scholar 

  • Yamaha E, Mizuno T, Hasebe Y, Takeda H, Yamazaki F (1998) Dorsal specification in blastoderm at the blastula stage in the goldfish, Carassius auratus. Dev Growth Differ 40: 267–275

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka Y, Mizuno T, Sasai Y, Kishi M, Takeda H, Kim CH, Hibi M, Hirano T (1998) A novel homeobox gene, dharma, can induce the organizer in a non-cell-autonomous manner. Genes Dev 12: 2345–2353

    Article  PubMed  CAS  Google Scholar 

  • Yamashita S, Miyagi C, Carmany-Rampey A, Shimizu T, Fujii R, Schier AF, Hirano T (2002) Stat3 controls cell movements during zebrafish gastrulation. Dev Cell 2: 363–375

    Article  PubMed  CAS  Google Scholar 

  • Yost C, Farr GH, Pierce SB III, Ferkey DM, Chen MM, Kimelman D (1998) GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93: 1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Talbot WS, Schier AF (1998) Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92: 241–251

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Waxman, J.S., Moon, R.T. (2004). Formation and Functions of the Gastrula Organizer in Zebrafish. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics