The Organizer in Amphibians with Large Eggs: Problems and Perspectives

  • Eugenia M. del Pino
  • Richard P. Elinson


The amphibians are a diverse group that includes not only the frogs and toads (Anura), but also the newts and salamanders (Urodela), and the limbless and tailless amphibians (Gymnophiona). Development has been extensively investigated in the frog Xenopus laevis, but we have limited information for other amphibians, many of which have different reproductive modes (reviewed in Duellman and Trueb 1986). The study of the morphological variation and gene expression patterns among amphibians provides comparative data on early development. Such comparisons represent natural experiments that expand our understanding of development.


Vegetal Pole Mesoderm Formation Early Gastrula Cleavage Cycle Midblastula Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauer DV, Huang S, Moody SA (1994) The cleavage stage origin of Spemann’s organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development 120: 1179–1189PubMedGoogle Scholar
  2. Beddington RSP, Smith JC (1993) Control of vertebrate gastrulation: inducing signals and responding genes. Curr Opin Gen Dev 3: 655–661CrossRefGoogle Scholar
  3. Benitez M-S, del Pino EM (2002) The expression of Brachyury during development of the dendrobatid frog Colostethus machalilla. Dev Dyn 225: 592–596PubMedCrossRefGoogle Scholar
  4. Brown HA (1989) Developmental anatomy of the tailed frog (Ascaphus truei): a primitive frog with large eggs and slow development. J Zool Lond 217: 525–527CrossRefGoogle Scholar
  5. Gallery EM, Fang H, Elinson RP (2001) Frogs without polliwogs: evolution of anuran direct development. BioEssays 23: 233–241CrossRefGoogle Scholar
  6. Chan AP, Etkin LD (2001) Patterning and lineage specification in the amphibian embryo. Curr Top Dev Biol 51: 1–67PubMedCrossRefGoogle Scholar
  7. Chipman AD, Haas A, Khaner O (1999) Variations in anuran embryogenesis: yolk-rich embryos of Hyperolius puncticulatus (Hyperoliidae). Evol Dev 1: 49–61PubMedCrossRefGoogle Scholar
  8. del Pino EM (1989) Modifications of oogenesis and development in marsupial frogs. Development 107: 169–187PubMedGoogle Scholar
  9. del Pino EM (1996) The expression of Brachyury (T) during gastrulation in the marsupial frog Gastrotheca riobambae. Dev Biol 177: 64–72PubMedCrossRefGoogle Scholar
  10. del Pino EM, Elinson RP (1983) Gastrulation produces an embryonic disc, a novel developmental pattern for frogs. Nature 306: 589–591CrossRefGoogle Scholar
  11. del Pino EM, Escobar B (1981) Embryonic stages of Gastrotheca riobambae ( Fowler) during maternal incubation and comparison of development with that of other egg-brooding hylid frogs. J Morphol 167: 277–295Google Scholar
  12. del Pino EM, Humphries AA Jr (1978) Multinucleated oogenesis in Flectonotus pygmaeus and other marsupial frogs. Biol Bull 154: 198–212CrossRefGoogle Scholar
  13. del Pino EM, Loor-Vela S (1990) The pattern of early cleavage of the marsupial frog Gastrotheca riobambae. Development 110: 781–789PubMedGoogle Scholar
  14. del Pino EM, Steinbeisser H, Hofmann A, Dreyer C, Campos M, Trendelenburg MF (1986) 0o-genesis in the egg-brooding frog Gastrotheca riobambae produces large oocytes with fewer nucleoli and low RNA content in comparison to Xenopus laevis. Differentiation 32: 24–33Google Scholar
  15. Doi J, Niigaki H, Sone K, Takabatake T, Takeshina K, Yasui K, Tosuji H, Tsukahara J, Sakai M (2000) Distribution of dorsal-forming activity in precleavage embryos of the japanese newt, Cynops pyrrhogaster: effects of deletion of vegetal cytoplasm, UV irradiation and lithium treatment. Dev Biol 223: 154–168Google Scholar
  16. Duellman WE, Trueb L (1986) Biology of amphibians. McGraw-Hill, New YorkGoogle Scholar
  17. Dunker N, Wake MH, Olson WM (2000) Embryonic and larval development in the caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona): a staging table. J Morphol 243: 3–34PubMedCrossRefGoogle Scholar
  18. Elinson RP, Beckham I (2002) Development in frogs with large eggs and the origin of amniotes. Zoology 105: 105–117PubMedCrossRefGoogle Scholar
  19. Elinson RP, del Pino EM (1985) Cleavage and gastrulation in the egg-brooding, marsupial frog, Gastrotheca riobambae. J Embryol Exp Morphol 90: 223–232PubMedGoogle Scholar
  20. Elinson RP, Fang H (1998) Secondary coverage of the yolk by the body wall in the direct developing frog, Eleutherodactylus coqui: an unusual process for amphibian embryos. Dev Genes Evol 208: 457–466PubMedCrossRefGoogle Scholar
  21. Elinson RP, Ninomiya H (2003) Parallel microtubules and other conserved elements of dorsal axial specification in the direct developing frog, Eleutherodactylus coqui. Dev Genes Evol 213: 28–34PubMedGoogle Scholar
  22. Elinson RP, Rowning B (1988) A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128: 185–197PubMedCrossRefGoogle Scholar
  23. Elinson RP, del Pino EM, Townsend DS, Cuesta FC, Eichhorn P (1990) A practical guide to the developmental biology of terrestrial-breeding frogs. Biol Bull 179: 163–177CrossRefGoogle Scholar
  24. Fang H, Marikawa Y, Elinson RP (2000) Ectopic expression of Xenopus noggin RNA induces complete secondary body axes in embryos of the direct developing frog Eleutherodactylus coqui. Dev Genes Evol 210: 21–27PubMedCrossRefGoogle Scholar
  25. Grunz H (2001) Developmental biology of amphibians after Hans Spemann in Germany. Int J Dev Biol 45: 39–50PubMedGoogle Scholar
  26. Heasman J (1997) Patterning the Xenopus blastula. Development 124: 4179–4191PubMedGoogle Scholar
  27. Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, Kintner C, Noro CY, Wylie C (1994) Overexpression of cadherins and underexpression of ß-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79: 791–803PubMedCrossRefGoogle Scholar
  28. Horb ME, Thomsen GH (1997) A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Development 124: 1689–1698PubMedGoogle Scholar
  29. Ishikawa C (1908) Über den Riesensalamander Japans. Mitt Dtsch Ges Natur Völkerkd Ostasiens Tokyo 11: 259–280Google Scholar
  30. Iwama H (1968) Normal table of Megalobatrachus japonicus. Biological Institute, Nagoya University, Nagoya, JapanGoogle Scholar
  31. Jacobson AG (1981) Morphogenesis of the neural plate and tube. In: Connelly TG, Brinkley L, Carlson B (eds) Morphogenesis and pattern formation. Raven Press, New York, pp 223–263Google Scholar
  32. Jacobson AG (1991) Experimental analysis of the shaping of the neural plate and tube. Am Zool 31: 628–643Google Scholar
  33. Jouvin K, Stern CD (2001) Formation and maintenance of the organizer among the vertebrates. Int J Dev Biol 45: 165–175Google Scholar
  34. Keller R (1999) The origin and morphogenesis of amphibian somites. Curr Top Dev Biol 47: 183–246CrossRefGoogle Scholar
  35. Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGF(3 growth factors. Development 126: 5759–5770PubMedGoogle Scholar
  36. Liao Y-D, Huang H-C, Leu Y-J, Wei C-W, Tang P-C, Wang S-C (2000) Purification and cloning of cytotoxic ribonucleases from Rana catesbeiana (bullfrog). Nucleic Acids Res 28: 4097–4104PubMedCrossRefGoogle Scholar
  37. Lustig KD, Kroll KL, Sun EE, Kirschner MW (1996) Expression cloning of a Xenopus T-related gene (Xombi) involved in mesoderm patterning and blastopore lip formation. Development 122: 4001–4012PubMedGoogle Scholar
  38. Macgregor HC, Kezer J (1970) Gene amplification in oocytes with 8 germinal vesicles from the tailed frog Ascaphus truei Stejneger. Chromosoma (Berl) 29: 189–206CrossRefGoogle Scholar
  39. Marikawa Y, Elinson RP (1999) Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/(3-catenin signaling pathway. Mech Dev 89: 93–102PubMedCrossRefGoogle Scholar
  40. Miller JR, Rowning BA, Larabell CA, Yang-Snyder JA, Bates RL, Moon RT (1999) Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of disheveled that is dependent on cortical rotation. J Cell Biol 146: 427–437PubMedCrossRefGoogle Scholar
  41. Moon RT, Kimelman D (1998) From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. Bioessays 20: 536–545PubMedCrossRefGoogle Scholar
  42. Newport J, Kirschner M (1982a) A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular change at the midblastula stage. Cell 30: 675–686Google Scholar
  43. Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30: 687–696Google Scholar
  44. Nieuwkoop PD, Faber J (1994) Normal Table of Xenopus laevis (Daudin). Garland Publ, New YorkGoogle Scholar
  45. Nina HL, del Pino EM (1977) Estructura histol6gica del ovario del sapo Eleuterodactylus unistrigatus y observaciones sobre el desarrollo embrionario. Rev Univ Cat61 5: 31–41Google Scholar
  46. Ninomiya H, Zhang Q, Elinson RP (2001) Mesoderm formation in Eleutherodactylus coqui: body patterning in a frog with a large egg. Dev Biol 236: 109–123PubMedCrossRefGoogle Scholar
  47. Rowning BA, Wells J, Wu M, Gerhart JC, Moon RT, Larabell CA (1997) Microtubule-mediated transport of organelles and localization of 3-catenin to the future dorsal side of Xenopus eggs. Proc Natl Acad Sci USA 94: 1224–9PubMedCrossRefGoogle Scholar
  48. Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) 3-Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57: 191–198Google Scholar
  49. Shi DL, Delarue M, Darribère T, Riou J-F, Boucaut JC (1987) Experimental analysis of the extension of the dorsal marginal zone in Pleurodeles waltl. Development 100: 147–161PubMedGoogle Scholar
  50. Shumway W (1940) Stages in the normal development of Rana pipiens. Anat Rec 78: 139–146CrossRefGoogle Scholar
  51. Smith BG (1912) The embryology of Cryptobranchus allegheniensis, including comparisons with some other vertebrates. II. General embryonic and larval development, with special reference to external features. J Morphol 23: 455–580CrossRefGoogle Scholar
  52. Smith JC, Price BMJ, Green JBA, Weigel D, Herrmann BG (1991) Expression of a Xenopus homolog of Brachyury ( T) is an immediate-early response to mesoderm induction. Cell 67: 79–87Google Scholar
  53. Spemann H, Mangold H (1924) Über Induktion von Embryonalanlagen durch Implantation artfremder Organizatoren. Roux’s Arch Entw Organis Mikrosk Anat 100: 599–638Google Scholar
  54. Stennard F, Carnac G, Gurdon JB (1996) The Xenopus T-box gene Antipodean encodes a vegetally localised maternal mRNA and can trigger mesoderm formation. Development 122: 4179–4188PubMedGoogle Scholar
  55. Svensson GO (1938) Zur Kenntnis der Furchung bei den Gymnophionen. Acta Zool 19: 191–207CrossRefGoogle Scholar
  56. Townsend DS, Stewart MM (1985) Direct development in Eleutherodactylus coqui (Anura: Leptodactylidae): a staging table. Copeia 1985: 423–436CrossRefGoogle Scholar
  57. Trendeleburg MF, McKinnell RG (1979) Transcriptionally active and inactive regions of nucleolar chromatin in amplified nucleoli of fully grown oocytes of hibernating frogs, Rana pipiens ( Amphibia, Anura). Differentiation 15: 73–95Google Scholar
  58. Vincent J-P, Gerhart JC (1986) Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev Biol 123: 526–539CrossRefGoogle Scholar
  59. Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128: 167–180PubMedGoogle Scholar
  60. Yasuo H, Lemaire P (2001) Generation of the germ layers along the animal-vegetal axis in Xenopus laevis. Int J Dev Biol 45: 229–235PubMedGoogle Scholar
  61. Youn BW, Keller RE, Malacinski GM (1980) An atlas of notochord and somite morphogenesis in several anuran and urodelean amphibians. J Embryol Exp Morphol 59: 223–247PubMedGoogle Scholar
  62. Zhang J, King ML (1996) Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development 122: 4119–4129Google Scholar
  63. Zhang J, Houston DW, King ML, Payne C, Wylie C, Heasman J (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94: 515–524PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Eugenia M. del Pino
    • 1
  • Richard P. Elinson
    • 2
  1. 1.Departamento de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
  2. 2.Department of Biological SciencesDuquesne UniversityPittsburghUSA

Personalised recommendations