Skip to main content

A Critical Role for Retinoid Receptors in Axial Patterning and Neuronal Differentiation

  • Chapter

Abstract

Vitamin A is required for growth, vision, reproduction, morphogenesis, hematopoiesis, immune function, and differentiation of normal and malignant tissues (Sporn 1994). Vitamin A deficiency during development leads to a spectrum of well-characterized defects collectively called the fetal vitamin A deficiency (VAD) syndrome. Retinoic acid (RA) excess produces a spectrum of developmental defects affecting many of the same tissues as VAD, e.g. the heart, CNS, eyes, ears and reproductive tissues. Sensitivity of the same embryonic tissues to RA deficiency or excess suggested that endogenous RA levels required precise regulation for development to proceed correctly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan D, Houle M, Bouchard N, Meyer BI, Gruss P, Lohnes D (2001) RARgamma and Cdxl interactions in vertebral patterning. Dev Biol 240: 46–60

    Article  PubMed  CAS  Google Scholar 

  • Amaya E, Stein PA, Musci TJ, Kirschner MW (1993) FGF signalling in the early specification of mesoderm in Xenopus. Development 118: 477–487

    PubMed  CAS  Google Scholar 

  • Baker NE (2000) Notch signaling in the nervous system. Pieces still missing from the puzzle. Bioessays 22: 264–273

    Article  PubMed  CAS  Google Scholar 

  • Bally-Cuif L, Boncinelli E (1997) Transcription factors and head formation in vertebrates. BioEssays 19: 127–135

    Article  PubMed  CAS  Google Scholar 

  • Bang AG, Papalopulu N, Kintner C, Goulding MD (1997) Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 124: 2075–2085

    PubMed  CAS  Google Scholar 

  • Bang AG, Papalopulu N, Goulding MD, Kintner C (1999) Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev Biol 212: 366–380

    Article  PubMed  CAS  Google Scholar 

  • Bellaiche Y, The I, Perrimon N (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394: 85–88

    CAS  Google Scholar 

  • Bellefroid EJ, Kobbe A, Gruss P, Pieler T, Gurdon JB, Papalopulu N (1998) Xiro3 encodes a Xenopus homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J 17: 191–203

    Article  PubMed  CAS  Google Scholar 

  • Blumberg B (1997) An essential role for retinoid signaling in anteroposterior neural specification and neuronal differentiation. Semin Cell Dev Biol 8: 417–428

    Article  PubMed  CAS  Google Scholar 

  • Blumberg B, Mangelsdorf DJ, Dyck J, Bittner DA, Evans RM, de Robertis EM (1992) Multiple retinoid-responsive receptors in a single cell: families of RXRs and RARs in the Xenopus egg. Proc Natl Acad Sci USA 89: 2321–2325

    Article  PubMed  CAS  Google Scholar 

  • Blumberg B, Bolado J, Moreno TA, Kintner C, Evans RM, Papalopulu N (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124: 373–379

    PubMed  CAS  Google Scholar 

  • Bray S (1998) A Notch affair. Cell 93: 499–503

    CAS  Google Scholar 

  • Brewster R, Lee J, Ruiz i Altaba A (1998) Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393: 579–583

    Article  PubMed  CAS  Google Scholar 

  • Chang BE, Blader P, Fischer N, Ingham PW, Strahle U (1997) Axial (HNF3beta) and retinoic acid receptors are regulators of the zebrafish sonic hedgehog promoter. EMBO J 16: 3955–3964

    Article  PubMed  CAS  Google Scholar 

  • Charite J, de Graaff W, Consten D, Reijnen MJ, Korving J, Deschamps J (1998) Transducing positional information to the Hox genes: critical interaction of cdx gene products with position-sensitive regulatory elements. Development 125: 4349–4358

    PubMed  CAS  Google Scholar 

  • Chen Y, Pollet N, Niehrs C, Pieler T (2001) Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev 101: 91–103

    Article  PubMed  CAS  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Gorden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383: 407–413

    Article  PubMed  CAS  Google Scholar 

  • Chiba H, Clifford J, Metzger D, Chambon P (1997) Distinct retinoid X receptor-retinoic acid receptor heterodimers are differentially involved in the control of expression of retinoid target genes in F9 embryonal carcinoma cells. Mol Cell Biol 17: 3013–3020

    PubMed  CAS  Google Scholar 

  • Chitnis A, Henrique D, Lewis J, Ish-Horowicz D, Kintner C (1995) Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375: 761–766

    Article  PubMed  CAS  Google Scholar 

  • Cho KWY, de Robertis EM (1990) Differential activation of Xenopus homeobox genes by mesoderm inducing growth factors and retinoic acid. Genes Dev 4: 1910–1916

    Article  PubMed  CAS  Google Scholar 

  • Colamarino SA, Tessier-Lavigne M (1995) The role of the floor plate in axon guidance. Annu Rev Neurosci 18: 497–529

    Article  PubMed  CAS  Google Scholar 

  • Conlon RA (1995) Retinoic acid and pattern formation in vertebrates. Trends Genet 11: 314–319

    Article  PubMed  CAS  Google Scholar 

  • Cox WG, Hemmati-Brivanlou A (1995) Caudalization of neural fate by tissue recombination and bFGF. Development 121: 4349–4358

    PubMed  CAS  Google Scholar 

  • De Roos K, Sonneveld E, Compaan B, ten Berge D, Durston AJ, van der Saag PT (1999) Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis. Mech Dev 82: 205–211

    Article  PubMed  Google Scholar 

  • De Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290: 2140–2144

    Article  PubMed  Google Scholar 

  • Dickman ED, Thaller C, Smith SM (1997) Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124: 3111–3121

    PubMed  CAS  Google Scholar 

  • Domingos PM, Itasaki N, Jones SA, Mercurio S, Sargent MG, Smith JC, Krumlauf R (2001) The Wnt/b-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signaling. Dev Biol 239: 148–160

    Article  PubMed  CAS  Google Scholar 

  • Doniach T (1995) Basic FGF as an inducer of anteroposterior neural pattern. Cell 83: 1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Dupe V, Lumsden A (2001) Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128: 2199–2208

    PubMed  CAS  Google Scholar 

  • Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340: 140–144

    Article  PubMed  CAS  Google Scholar 

  • Durston AJ, van der Wees J, Pijnappel WW, Godsave SF (1998) Retinoids and related signals in early development of the vertebrate central nervous system. Curr Top Dev Biol 40: 111–75

    Article  PubMed  CAS  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75: 1417–1430

    Article  PubMed  CAS  Google Scholar 

  • Ekker SC, McGrew LL, Lai CJ, Lee JJ, von Kessler DP, Moon RT, Beachy PA (1995) Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development 121: 2337–2347

    PubMed  CAS  Google Scholar 

  • Epstein DJ, McMahon AP, Joyner AL (1999) Regionalization of Sonic hedgehog transcription along the anteroposterior axis of the mouse central nervous system is regulated by Hnf3-dependent and -independent mechanisms. Development 126: 281–292

    PubMed  CAS  Google Scholar 

  • Ericson J, Morton S, Kawakami A, Roelink H, lessen TM (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87: 661–673

    Article  PubMed  CAS  Google Scholar 

  • Erter CE, Wilm TP, Basler N, Wright CV, Solnica-Krezel L (2001) Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128: 3571–3583

    PubMed  CAS  Google Scholar 

  • Eyal-Giladi H (1954) Dynamic aspects of neural induction. Arch Biol 65: 180–259

    Google Scholar 

  • Fainsod A, Steinbeisser H, de Robertis EM (1994) On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J 13: 5015–5025

    PubMed  CAS  Google Scholar 

  • Fainsod A, Deissler K, Yelin R, Marom K, Epstein M, Pillemer G, Steinbeisser H, Blum M (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 63: 39–50

    Article  PubMed  CAS  Google Scholar 

  • Fekany-Lee K, Gonzalez E, Miller-Bertoglio V, Solnica-Krezel L (2000) The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127: 2333–2345

    PubMed  CAS  Google Scholar 

  • Ferreiro B, Skoglund P, Bailey A, Dorsky R, Harris WA (1993) XASH1, a Xenopus homolog of achaete-scute: a proneural gene in anterior regions of the vertebrate CNS. Mech Dev 40: 25–36

    Article  PubMed  CAS  Google Scholar 

  • Ferreiro B, Kintner C, Zimmerman K, Anderson D, Harris WA (1994) XASH genes promote neurogenesis in Xenopus embryos. Development 120: 3649–3655

    PubMed  CAS  Google Scholar 

  • Franco PG, Paganelli AR, Lopez SL, Carrasco AE (1999) Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development 126: 4257–4265

    PubMed  CAS  Google Scholar 

  • Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Skarmeta JL, Glavic A, de la Calle-Mustienes E, Modolell J, Mayor R (1998) Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate. EMBO J 17: 181–190

    CAS  Google Scholar 

  • Hardcastle Z, Chalmers AD, Papalopulu N (2000) FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Curr Biol 10: 1511–1413

    Article  PubMed  CAS  Google Scholar 

  • Harland R (2000) Neural induction. Curr Opin Genet Dev 10: 357–362

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein V (1989) Early neurogenesis in Xenopus: the spatio-temporal pattern of proliferation and cell lineages in the embryonic spinal cord. Neuron 3: 399–411

    Article  PubMed  CAS  Google Scholar 

  • Hawley SH, Wunnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg B, Cho KWY (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9: 2923–2935

    Article  PubMed  CAS  Google Scholar 

  • Helms J, Thaller C, Eichele G (1994) Relationship between retinoic acid and sonic hedgehog, two polarizing signals in the chick wing bud. Development 120: 3267–3274

    PubMed  CAS  Google Scholar 

  • Helms JA, Kim CH, Hu D, Minkoff R, Thaller C, Eichele G (1997) Sonic hedgehog participates in craniofacial morphogenesis and is down-regulated by teratogenic doses of retinoic acid. Dev Biol 187: 25–35

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77: 273–281

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cis-Retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68: 397–406

    Google Scholar 

  • Hollemann T, Chen Y, Grunz H, Pieler T (1998) Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J 17: 7361–7372

    Article  PubMed  CAS  Google Scholar 

  • Holley SA, Jackson PD, Sasai Y, Lu B, de Robertis EM, Hoffmann FM, Ferguson EL (1995) A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin (see comments). Nature 376: 249–253

    Article  PubMed  CAS  Google Scholar 

  • Houle M, Prinos P, Julianella A, Bouchard N, Lohnes D (2000) Retinoic acid regulation of Cdxl: an indirect mechanism for retinoids and vertebral specification. Mol Cell Biol 20: 6579–6586

    Article  PubMed  CAS  Google Scholar 

  • Isaacs HV, Pownall ME, Slack JM (1998) Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J 17: 3413–3427

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life. Cell 83: 859–869

    Article  PubMed  CAS  Google Scholar 

  • Katsuyama Y, Saiga H (1998) Retinoic acid affects patterning along the anterior-posterior axis of the ascidian embryo. Dev Growth Differ 40: 413–422

    Article  PubMed  CAS  Google Scholar 

  • Keidel S, LeMotte P, Apfel C (1994) Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol Cell Biol 14: 287–298

    PubMed  CAS  Google Scholar 

  • Kengaku M, Okamoto H (1995) bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121: 3121–3130

    Google Scholar 

  • Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC, Driever W, Chitnis AB (2000) Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407: 913–916

    Article  PubMed  CAS  Google Scholar 

  • Kitareewan S, Burka LT, Tomer KB, Parker CE, Deterding LJ, Stevens RD, Forman BM, Mais DE, Heyman RA, McMorris T, Weinberger C (1996) Phytol metabolites are circulating dietary factors that activate the nuclear receptor RXR. Mol Biol Cell 7: 1153–1166

    PubMed  CAS  Google Scholar 

  • Koide T, Downes M, Chandraratna RA, Blumberg B, Umesono K (2001) Active repression of RAR signaling is required for head formation. Genes Dev 15: 2111–2121

    Article  PubMed  CAS  Google Scholar 

  • Kolm PJ, Apekin V, Sive H (1997) Xenopus hindbrain patterning requires retinoid signaling. Dev Biol 192: 1–16

    Google Scholar 

  • Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75: 1431–1444

    Article  PubMed  CAS  Google Scholar 

  • Krezel W, Dupe V, Mark M, Dierich A, Kastner P, Chambon P (1996) RXRg null mice are apparently normal and compound RXRa+/-/RXRb-/-/RXRg-/- mutant mice are viable. Proc Natl Acad Sci USA 93: 9010–9014

    Article  PubMed  CAS  Google Scholar 

  • Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122: 3173–3183

    PubMed  CAS  Google Scholar 

  • Lamb TM, Harland RM (1995) Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121: 3627–3636

    PubMed  CAS  Google Scholar 

  • Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin (see comments). Science 262: 713–718

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Platt KA, Censullo P, Ruiz i Altaba A (1997) Glil is a target of Sonic hedgehog that induces ventral neural tube development. Development 124: 2537–2552

    PubMed  CAS  Google Scholar 

  • Lee JE (1997) Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 7: 13–20

    Article  PubMed  Google Scholar 

  • Lee JJ, von Kessler DP, Parks S, Beachy PA (1992) Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 71: 33–50

    Article  PubMed  CAS  Google Scholar 

  • Lekven AC, Thorpe CP, Waxman JS, Moon RT (2001) Zebrafish Wnt8 encodes two Wnt8 proteins on a bicistronic transcript and is required for mesoderm and neuroectoderm patterning. Dev Cell 1: 103–114

    Article  PubMed  CAS  Google Scholar 

  • Lemotte PK, Keidel S, Apfel CM (1996) Phytanic acid is a retinoid X receptor ligand. Eur J Biochem 236: 328–333

    Article  PubMed  CAS  Google Scholar 

  • Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen C, Rosenberger J, Lovey A, Grippo JF (1992) 9-cis-Retinoic acid stereoisomer binds and activates the nuclear receptor RXRa. Nature 355: 359–361

    Google Scholar 

  • Lopez SL, Carrasco AE (1992) Retinoic acid induces changes in the localization of homeobox proteins in the antero-posterior axis of Xenopus laevis embryos. Mech Dev 36: 153–164

    Article  PubMed  CAS  Google Scholar 

  • Lopez SL, Dono R, Zeller R, Carrasco AE (1995) Differential effects of retinoic acid and a retinoid antagonist on the spatial distribution of the homeoprotein Hoxb-7 in vertebrate embryos. Dev Dyn 204: 457–471

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Holder N (1992) Retinoic acid and the development of the central nervous system. BioEssays 14: 431–438

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Gale E, Kostetskii I, Zile M (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 6: 417–426

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Graham A, Gale E, Rollinson C, Zile M (1997) Positional apoptosis during vertebrate CNS development in the absence of endogenous retinoids. Development 124: 2799–2805

    PubMed  CAS  Google Scholar 

  • Marigo V, Tabin CJ (1996) Regulation of patched by sonic hedgehog in the developing neural tube. Proc Natl Acad Sci USA 93: 9346–9351

    Article  PubMed  CAS  Google Scholar 

  • Marine JC, Bellefroid EJ, Pendeville H, Martial JA, Pieler T (1997) A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm. Mech Dev 63: 211–225

    Article  PubMed  Google Scholar 

  • McGrew LL, Lai CJ, Moon RT (1995) Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev Biol 172: 337–342

    Article  PubMed  CAS  Google Scholar 

  • McGrew LL, Hoppler S, Moon RT (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228: 151–165

    Article  PubMed  CAS  Google Scholar 

  • Nakata K, Nagai T, Aruga J, Mikoshiba K (1998) Xenopus Zic family and its role in neural and neural crest development. Mech Dev 75: 43–51

    Google Scholar 

  • Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development (see comments). Nat Genet 21: 444–448

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD (1952) Activation and organization of the central nervous system in amphibians. III. Synthesis of a new working hypothesis. J Exp Zool 120: 83–108

    Article  Google Scholar 

  • Niswander L, Jeffrey S, Martin GR, Tickle C (1994) A positive feedback loop coordinates growth and patterning in the vertebrate limb (see comments). Nature 371: 609–612

    Article  PubMed  CAS  Google Scholar 

  • Paganelli AR, Ocana OH, Prat MI, Franco PG, Lopez SL, Morelli L, Adamo AM, Riccomagno MM, Matsubara E, Shoji M, Affranchino JL, Castano EM, Carrasco AE (2001) The Alzheimer-related gene presenilin-1 facilitates sonic hedgehog expression in Xenopus primary neurogenesis. Mech Dev 107: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Papalopulu N, Kintner C (1996) A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm. Development 122: 3409–3418

    PubMed  CAS  Google Scholar 

  • Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, Taylor FR, Wang EA, Galdes A (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273: 14037–14045

    Article  PubMed  CAS  Google Scholar 

  • Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330: 444–450

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, de Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598

    Article  PubMed  CAS  Google Scholar 

  • Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274: 255–259

    Article  PubMed  CAS  Google Scholar 

  • Pownall ME, Tucker AS, Slack JMW, Isaacs HV (1996) eFGF, Xcad3, and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 122: 38813892

    Google Scholar 

  • Pownall ME, Isaacs HV, Slack JM (1998) Two phases of Hox gene regulation during early Xenopus development. Curr Biol 8: 673–676

    Article  PubMed  CAS  Google Scholar 

  • Prinos P, Joseph S, Oh K, Meyer BI, Gruss P, Lohnes D (2001) Multiple pathways governing Cdxl expression during murine development. Dev Biol 239: 257–269

    Article  PubMed  CAS  Google Scholar 

  • Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75: 1401–1416

    Article  PubMed  CAS  Google Scholar 

  • Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC, Muenke M (1996) Mutations in the human Sonic hedgehog gene cause holoprosencephaly. Nat Genet 14: 357–360

    Article  PubMed  CAS  Google Scholar 

  • Ruiz i Altaba A (1997) Catching a Gli-mpse of Hedgehog. Cell 90: 193–196

    Article  Google Scholar 

  • Ruiz i Altaba A, Jessell T (1991) Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev 5: 175–187

    Article  Google Scholar 

  • Salzberg A, Bellen HJ (1996) Invertebrate versus vertebrate neurogenesis: variations on the same theme? Dev Genet 18: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, de Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376: 333–336

    Article  PubMed  CAS  Google Scholar 

  • Sharpe CR, Goldstone K (1997) Retinoid receptors promote primary neurogenesis in Xenopus. Development 124: 515–523

    PubMed  CAS  Google Scholar 

  • Sharpe C, Goldstone K (2000) The control of Xenopus embryonic primary neurogenesis is mediated by retinoid signalling in the neurectoderm. Mech Dev 91: 69–80

    Article  PubMed  CAS  Google Scholar 

  • Sive HL, Cheng PF (1991) Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis. Genes Dev 5: 1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Sive HL, Draper BW, Harland R, Weintraub H (1990) Identification of retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev 4: 932–942

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB, Goodman DS (eds) (1994) The retinoids: biology, chemistry, and medicine, 2nd edn. Raven Press, New York

    Google Scholar 

  • Stoeckli ET, Landmesser LT (1998) Axon guidance at choice points. Curr Opin Neurobiol 8: 73–79

    Article  PubMed  CAS  Google Scholar 

  • Subramanian V, Meyer BI, Gruss P (1995) Disruption of the murine homeobox gene Cdxl affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83: 641–653

    Article  PubMed  CAS  Google Scholar 

  • Sulik KK, Dehart DB, Rogers JM, Chernoff N (1995) Teratogenicity of low doses of all-trans retinoic acid in presomite mouse embryos. Teratology 51: 398–403

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Jessell TM (1996) Diversity and pattern in the developing spinal cord. Science 274: 1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Tanabe Y, Roelink H, Jessell TM (1995) Induction of motor neurons by Sonic hedgehog is independent of floor plate differentiation. Curr Biol 5: 651–658

    Article  PubMed  CAS  Google Scholar 

  • Torok MA, Gardiner DM, Izpisua-Belmonte JC, Bryant SV (1999) Sonic hedgehog (shh) expression in developing and regenerating axolotl limbs. J Exp Zool 284: 197–206

    Article  PubMed  CAS  Google Scholar 

  • Van der Wees J, Schilthuis JG, Koster CH, Diesveld-Schipper H, Folkers GE, van der Saag PT, Dawson MI, Shudo K, van der Burg B, Durston AJ (1998) Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain. Development 125: 545–556

    PubMed  Google Scholar 

  • Wettstein DA, Turner DL, Kintner C (1997) The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124: 693–702

    PubMed  CAS  Google Scholar 

  • White JC, Shankar VN, Highland M, Epstein ML, DeLuca HF, Clagett-Dame M (1998) Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding pharmacological levels of all-trans-retinoic acid. Proc Natl Acad Sci USA 95: 13459–13464

    Article  PubMed  CAS  Google Scholar 

  • Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376: 331–333

    Article  PubMed  CAS  Google Scholar 

  • Xu RH, Kim J, Taira M, Zhan S, Sredni D, Kung HF (1995) A dominant negative bone morpho-genetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem Biophys Res Commun 212: 212–219

    Article  PubMed  CAS  Google Scholar 

  • Yamada T (1994) Caudalization by the amphibian organizer: brachyury, convergent extension and retinoic acid. Development 120: 3051–3062

    PubMed  CAS  Google Scholar 

  • Zimmerman K, Shih J, Bars J, Collazo A, Anderson DJ (1993) XASH-3, a novel Xenopus achaetescute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate. Development 119: 221–232

    PubMed  CAS  Google Scholar 

  • Zimmerman LB, de Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599–606

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carrasco, A.E., Blumberg, B. (2004). A Critical Role for Retinoid Receptors in Axial Patterning and Neuronal Differentiation. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics