Advertisement

Embryonic Organogenesis and Body Formation in Amphibian Development

  • M. Asashima
  • A. Sogame
  • T. Ariizumi
  • T. Igarashi
Chapter
  • 114 Downloads

Abstract

The fertilized egg is a single cell that forms an individual organism according to a built-in developmental program. During development, an organizer is produced in part of the gastrula. The organizer is the “center of the form” and triggers a progression of inductive signals to control the formation of various organs in predetermined places and the development of an overall morphology specific to each species. Over time, various phenomena follow, such as changes in the number and type of cells (cellular differentiation), morphogenetic movements, interactions between tissues, and embryonic induction. These processes advance the developmental program towards the goal of forming an integrated, individual organism. Life scientists today attempt to understand this ontogeny at the level of molecules (from a physical and chemical viewpoint).

Keywords

Pronephric Duct Dorsal Mesoderm Sandwich Culture Ventral Mesoderm Amphibian Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariizumi T, Asashima M (1995a) Control of the embryonic body plan by activin during amphibian development. Zool Sci 12: 509–521PubMedCrossRefGoogle Scholar
  2. Ariizumi T, Asashima M (1995b) Head and trunk-tail organizing effects of the gastrula ectoderm of Cynops pyrrhogaster after treatment with activin A. Roux’s Arch Dev Biol 204: 427–435CrossRefGoogle Scholar
  3. Ariizumi T, Asashima M (2001) In vitro induction systems for analyses of amphibian organogenesis and body patterning. Int J Dev Biol 45: 273–279PubMedGoogle Scholar
  4. Ariizumi T, Moroiya N, Uchiyama H, Asashima M (1991a) Concentration-dependent inducing activity of activin A. Roux’s Arch Dev Biol 200: 230–233CrossRefGoogle Scholar
  5. Ariizumi T, Sawamura K, Uchiyama H, Asashima M (1991b) Dose and time-development mesoderm induction and outgrowth formation by activin A in Xenopus laevis. Int J Dev Biol 35: 407–414PubMedGoogle Scholar
  6. Ariizumi T, Komazaki S, Asashima M, Malacinski GM (1996) Activin treated urodele ectoderm: a model experimental system for cardiogenesis. Int J Dev Biol 40: 715–718PubMedGoogle Scholar
  7. Asashima M (1994) Mesodermal induction during early amphibian development. Dev Growth Differ 36: 343–355CrossRefGoogle Scholar
  8. Asashima M, Shimada K, Nakano H, Kinoshita K, Ueno N (1989) Mesodermal induction by activin A (EDF) in Xenopus early embryo. Cell Differ Dev 27 [Supp1]: 53CrossRefGoogle Scholar
  9. Asashima M, Nakano H, Shimada K, Kinoshita K, Ishii K, Shibai H, Ueno N (1990) Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux’s Arch Dev Biol 198: 330–335CrossRefGoogle Scholar
  10. Asashima M, Nakano H, Uchiyama H, Sugino H, Nakamura T, Eto Y, Ejima D, Nishimatsu S, Ueno N, Kinoshita K (1991a) Presence of activin (Erythroid Differentiation Factor) in unfertilized eggs and blastulae of Xenopus laevis. Proc Natl Acad Sci USA 88: 6511–6514PubMedCrossRefGoogle Scholar
  11. Asashima M, Uchiyama H, Nakano H, Eto Y, Ejima D, Sugino H, Davids M, Plessow S, Born J, Hoppe P, Tiedemann H, Tiedemann H (199 lb) The vegetalizing factor from chicken embryos: its EDF (activin A)-like activity. Mech Dev 34: 135–141Google Scholar
  12. Asashima M, Kinoshita K, Ariizumi T, Malacinski GM (1999) Role of activin and other peptide growth factors in body patterning in the early amphibian embryo. Int Rev Cytol 191: 1–52PubMedCrossRefGoogle Scholar
  13. Born J, Geithe H-P, Tiedemann H, Tiedemann H, Kocher-Becker U (1972) Isolation of a vegetalizing inducing factor. Z Physiol Chem 353: 1075–1084CrossRefGoogle Scholar
  14. Brennan HC, Nijjar S, Jones EA (1999) The specification and growth factor inducibility of the pronephric glomus in Xenopus laevis. Development 126: 5847–5856PubMedGoogle Scholar
  15. Chan T, Asashima M (2000) Development of the embryonic kidney. Clin Exp Nephrol 4:1–10 Chan TC, Ariizumi T, Asashima M (1999) A model system for organ engineering: transplantation of in vitro induced embryonic kidney. Naturwissenschaften 86: 224–227Google Scholar
  16. Chan TC, Takahashi S, Asashima M (2000) A role for Xlim-1 in pronephros development in Xenopus laevis. Dev Biol 228: 256–269PubMedCrossRefGoogle Scholar
  17. Chen Y, Huang L, Solursh M (1994) A concentration gradient of retinoids in the early Xenopus laevis embryo. Dev Biol 161: 70–76PubMedCrossRefGoogle Scholar
  18. Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126: 4213–4222PubMedGoogle Scholar
  19. Diaz MRM, Takahashi TC, Takeshima K, Takata K (1990) Concanavalin A acts a factor in establishing the dorso-ventral gradient in the ventral mesoderm of newt gastrula embryos. Dev Growth Differ 32: 117–123CrossRefGoogle Scholar
  20. Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an antero-posterior transformation in the developing central nervous system. Nature 340: 140–144PubMedCrossRefGoogle Scholar
  21. Embryonic Organogenesis and Body Formation in Amphibian Development 253Google Scholar
  22. Fukui A, Nakamura T, Sugino K, Takio K, Uchiyama H, Asashima M, Sugino H (1993) Isolation and characterization of Xenopus follistatin and activins. Dev Biol 159: 131–139PubMedCrossRefGoogle Scholar
  23. Furue M, Myoishi Y, Fukui Y, Ariizumi T, Okamoto T, Asashima M (2002) Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro. Proc Natl Acad Sci USA 99: 15474–15479PubMedCrossRefGoogle Scholar
  24. Geithe H-P, Asashima M, Asahi K, Born J, Tiedemann H, Tiedemann H (1981) A vegetalizing inducing factor. Isolation and chemical properties. Biochim Biophys Acta 676: 350–356Google Scholar
  25. Grapin-Botton A, Majithia AR, Melton DA (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 15: 444–454PubMedCrossRefGoogle Scholar
  26. Grunz H (1985) Effect of concanavalin A and vegetalizing factor on the outer and inner ectoderm layers of early gastrulae of Xenopus laevis after treatment with cytochalasin B. Cell Differ 16: 83–92PubMedCrossRefGoogle Scholar
  27. Grunz H (1997) Neural induction in amphibians. Curr Top Dev Biol 35: 191–228PubMedCrossRefGoogle Scholar
  28. Grunz H, Tacke L (1990) Extracellular matrix components prevent neural differentiation of dis-aggregated Xenopus ectoderm cells. Cell Differ Dev 32: 117–124PubMedCrossRefGoogle Scholar
  29. Grunz H, McKeehan WL, Knöchel W, Born J, Tiedemann H, Tiedemann H (1988) Induction of mesodermal tissues by acidic and basic heparin binding growth factors. Cell Differ 22: 183–189PubMedCrossRefGoogle Scholar
  30. Hall BK, Miyake T (1995) Divide, accumulate, differentiate: cell condensation in skeletal development revisited (review). Int J Dev Biol 39: 881–893PubMedGoogle Scholar
  31. HamaT, Tsujimura H, Kanéda T, Takata K, Ohara A (1985) Inductive capacities of the dorsal mesoderm of the dorsal marginal zone and pharyngeal endoderm in the very early gastrula of the newt, and presumptive pharyngeal endoderm as an initiator of the organization center. Dev Growth Differ 27: 419–433CrossRefGoogle Scholar
  32. Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295PubMedCrossRefGoogle Scholar
  33. Holtfreter J (1933) Nachweis der Induktionsfähigkeit abgetöteter Keimteile. Isolations-and Transplantationsversuche. Wilhelm Roux ’ Arch Entwicklungsmech Org 128: 584–633CrossRefGoogle Scholar
  34. Jacobson AG (1960) Influences of ectoderm and endoderm on heart differentiation in the newt. Dev Biol 2: 138–154PubMedCrossRefGoogle Scholar
  35. Jacobson AG (1961) Heart determination in the newt. J Exp Zool 146: 139–152PubMedCrossRefGoogle Scholar
  36. Jacobson AG, Duncan JT (1968) Heart induction in salamanders. J Exp Zool 167: 79–103PubMedCrossRefGoogle Scholar
  37. Kim SK, Hebrok M, Melton DA (1997) Notochord to endoderm signaling is required for pancreas development. Development 124: 4243–4252PubMedGoogle Scholar
  38. Knöchel W, Born J, Hoppe P, Loppnow-Blinde B, Tiedemann H, Tiedemann H, McKeehan WL, Grunz H (1987) Mesoderm-inducing factors. Their possible relationship to heparin-binding growth factors and transforming growth factor-beta. Naturwissenschaften 74: 604–606Google Scholar
  39. Kuroda H, Inui M, Sugimoto K, Hayata T, Asashima M (2002) Axial protocadherin is a mediator of prenotochord cell sorting in Xenopus. Dev Biol 244: 267–277PubMedCrossRefGoogle Scholar
  40. Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262: 713–718PubMedCrossRefGoogle Scholar
  41. Langille RM (1994) In: Hall BK (ed) Differentitaion and morphogenesis of bone, vol 9. CRC Press, Boca Raton, FL, pp 1–64.Google Scholar
  42. Ling N, Ying SY, Ueno N, Shimasaki S, Esch F, Hotta M, Guillemin R (1986) A homodimer of the 13-subunits of inhibin A stimulates the secretion of pituitary follicle-stimulating hormone. Biochem Biophys Res Commun 138: 1129–1137PubMedCrossRefGoogle Scholar
  43. Lumelsky N, Blondel 0, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292: 13891394Google Scholar
  44. Lyons GE (1996) Vertebrate heart development. Curr Opin Genet Dev 6: 454–460PubMedCrossRefGoogle Scholar
  45. Miyanaga Y, Shiurba R, Nagata S, Pfeiffer J, Asashima M (1998) Induction of blood cells in Xenopus embryo explants. Dev Genes Evol 207: 417–426PubMedCrossRefGoogle Scholar
  46. Miyanaga Y, Shiurba R, Asashima M (1999) Blood cell induction in Xenopus animal cap explants: effects of fibroblast growth factor, bone morphogenetic proteins, and activin. Dev Genes Evol 209: 69–76PubMedCrossRefGoogle Scholar
  47. Mohun T, Sparrow D (1997) Early steps in vertebrate cardiogenesis. Curr Opin Genet Dev 7: 628633Google Scholar
  48. Moriya N, Uchiyama H, Aasashima M (1993) Induction of pronephric tubules by activin and retinoic acid in presumptive ectoderm of Xenopus laevis. Dev Growth Differ 35:123–128 Moriya N, Yokota C, Ariizumi T, Asashima M (1998) In vitro control of embryonic axis formation by activin A, concanavalin A, and retinoic acid in Xenopus laevis. Zool Sci 15: 879–886Google Scholar
  49. Moriya N, Komazaki S, Asashima (2000a) In vitro organogenesis of pancreas in Xenopus laevis dorsal lips treated with retinoic acid. Dev Growth Differ 42: 175–185Google Scholar
  50. Moriya N, Komazaki S, Takahashi S, Yokota C, Asashima M (2000b) In vitro pancreas formation from Xenopus ectoderm treated with activin and retinoic acid. Dev Growth Differ 42: 593–602PubMedCrossRefGoogle Scholar
  51. Muslin AJ, Williams LT (1991) Well-defined growth factors promote cardiac development in axolotl mesodermal explants. Development 112: 1095–1101PubMedGoogle Scholar
  52. Nakano H, Kinoshita K, Ishii K, Shibai H, Asashima M (1990) Activities of mesoderm-inducing factors secreted by mammalian cells in culture. Dev Growth Differ 32: 165–170CrossRefGoogle Scholar
  53. Ninomiya H, Ariizumi T, Asashima M (1998) Activin-treated ectoderm has complete organizing center activity in Cynops embryos. Dev Growth Differ 40: 199–208PubMedCrossRefGoogle Scholar
  54. Okada YK, Takaya H (1942a) Experimental investigation of regional differences in the inductive capacity of the organizer. Proc Imp Acad (Tokyo) 18: 505–513Google Scholar
  55. Okada YK, Takaya H (1942b) Further studies upon the regional differentiation of the inductive capacity of the organizer. Proc Imp Acad (Tokyo) 18: 514–519Google Scholar
  56. Okada YK, Hama T (1943) Examination of regional differences in the inductive activity of the organizer by means of transplantation into ectodermal vesicles. Proc Imp Acad (Tokyo) 19: 48–53Google Scholar
  57. Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax 6 function and upstream activation by Notch signaling in eye development of frogs and flies. Proc Natl Acad Sci USA 99: 2020–2025PubMedCrossRefGoogle Scholar
  58. Rosa F, Roberts AB, Danielpour D, Dart LL, Sporn MB, Dawid IB (1988) Mesoderm induction in amphibians: the role of TGF-f32-like factors. Science 239: 783–785PubMedCrossRefGoogle Scholar
  59. Sasai Y, Lu B, Steinbeisser H, de Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376: 333–336PubMedCrossRefGoogle Scholar
  60. Sato A, Asashima M, Yokota T, Nishinakamura R (2000) Gene expression pattern cloning and expression pattern of a Xenopus pronephros-specific gene, XSMP-30. Mech Dev 92: 273–275PubMedCrossRefGoogle Scholar
  61. Shigetani Y, Nobusada Y, Kuratani S (2000) Ectodermally derived FGF8 defines the maxillomandibular region in the early chick embryo: epithelial-mesenchymal interactions in the specification of the craniofacial ectomesenchyme. Dev Biol 228: 73–85PubMedCrossRefGoogle Scholar
  62. Slack JM (1995) Developmental biology of the pancreas. Development 121: 1569–1580PubMedGoogle Scholar
  63. Slack JM, Darlington BG, Heath JK, Godsave SF (1987) Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326: 197–200PubMedCrossRefGoogle Scholar
  64. Smith JC (1987) A mesoderm-inducing factor is produced by a Xenopus cell line. Development 99: 3–14PubMedGoogle Scholar
  65. Spemann H, Mangold H (1924) Über die Induktin von Embryonalanlagen durch Immplantation artfremder Organisatoren. Wilhem Roux’s Arch Entw Mech Org 100: 599–638Google Scholar
  66. Sugi Y, Lough J (1995) Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol 168: 567–574PubMedCrossRefGoogle Scholar
  67. Takata K, Yamamoto KY, Ishii I, Takahashi N (1984) Glycoproteins responsive to the neural- inducing effect of concanavalin A in Cynops presumptive ectoderm. Cell Differ 14: 25–31PubMedCrossRefGoogle Scholar
  68. Tamai K, Yokota C, Ariizumi T, Asashima M (1999) Cytochalasin B inhibits morphogenetic movement and muscle differentiation of activin-treated ectoderm in Xenopus. Dev Growth Differ 41: 41–49PubMedCrossRefGoogle Scholar
  69. Tanegashima K, Yokota C, Takahashi S, Asashima M (2000) Expression cloning of Xantivin, a Xenopus lefty/antivin related gene, involved in the regulation of activin signaling during mesoderm induction. Mech Dev 99: 3–14PubMedCrossRefGoogle Scholar
  70. Tiedemann H, Grunz H, Loppnow-Blinde, Tiedemann H (1994) Basic fibroblast growth factor can induce exclusively neural tissue in Triturus ectoderm explants. Roux’s Arch Dev Biol 203: 304–309CrossRefGoogle Scholar
  71. Embryonic Organogenesis and Body Formation in Amphibian Development 255Google Scholar
  72. Tiedemann H, Asashima M, Born J, Grunz H, Knöchel W, Tiedemann H (1996) Determination, induction and pattern formation in early amphibian embryos. Dev Growth Differ 38: 233–246CrossRefGoogle Scholar
  73. Tiedemann H, Asashima M, Grunz H, Knöchel W, Tiedemann H (1998) Neural induction in embryos. Dev Growth Differ 40: 363–376PubMedCrossRefGoogle Scholar
  74. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998b) Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147PubMedCrossRefGoogle Scholar
  75. Uochi T, Asashima M (1996) Sequential gene expression during pronephric tubule formation in vitro and in Xenopus ectoderm. Dev Growth Differ 38: 625–634CrossRefGoogle Scholar
  76. Uochi T, Asashima M (1998) XCIRP (Xenopus homolog of cold-inducible RNA binding protein) is expressed transiently in developing pronephros and neural tissue. Gene 211: 245–250PubMedCrossRefGoogle Scholar
  77. Uochi T, Takahashi S, Ninomiya H, Fukui A, Asashima M (1997) The Nat, K+-ATPase a subunit requires gastrulation in the Xenopus embryo. Dev Growth Differ 39: 571–580PubMedCrossRefGoogle Scholar
  78. Vale W, Rivier J, Vaughan J, McClitock R, Corrigan A, Woo W, Karr D, Spiess Y (1986) Purification and characterization of a FSH releasing protein from porcine ovarian follicular fluid. Nature 321: 776–779PubMedCrossRefGoogle Scholar
  79. Yokota C, Ariizumi T, Asashima M (1998) Patterns of gene expression in the core of Spemann’s organizer and activin-treated ectoderm in Cynops pyrrhogaster. Dev Growth Differ 40: 335–341PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Asashima
    • 1
    • 2
  • A. Sogame
    • 1
  • T. Ariizumi
    • 3
  • T. Igarashi
    • 1
  1. 1.Department of Life Sciences (Biology), Graduate School of Arts and SciencesThe University of TokyoMeguro-ku, TokyoJapan
  2. 2.SORST, Japan Science and Technology Corporation (JST)The University of TokyoTokyoJapan
  3. 3.Department of Experimental Nursing, Faculty of NursingFukuoka Prefectural UniversityTagawa-shi, FukuokaJapan

Personalised recommendations