Advertisement

Organizer Activities Mediated by Retinoic Acid Signaling

  • Yonglong Chen
  • Thomas Hollemann
  • Tomas Pieler
Chapter

Summary

Recent studies on two key enzymes in retinoic acid (RA) metabolism, namely CYP26A1, a RA-degrading hydroxylase, and RALDH2, a RA-generating dehydrogenase, provide novel insights regarding RA signaling during early vertebrate embryogenesis. Whole-mount in situ hybridization analysis with Xenopus embryos reveals that both enzymes start to be expressed at the onset of gastrulation in complementary domains along the anteroposterior axis of gastrula and neurula stage embryos including the organizer region, suggesting that the two enzymes might give rise to a dynamic RA concentration gradient in the early embryo. Both loss-of-function and gain-of-function studies via molecular and genetic approaches provide strong evidence for such a scenario. The data obtained reveal the essential role of RA signaling in anteroposterior (AP) axis patterning.

Keywords

Retinoic Acid Xenopus Embryo Retinoic Acid Signaling Null Mutant Mouse Lateral Plate Mesoderm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Abed S, Beckett BR, Chiba H, Chithalen JV, Jones G, Metzger D, Chambon P, Petkovich M (1998) Mouse P450RAI (CYP26) expression and retinoic acid-inducible retinoic acid metabolism in F9 cells are regulated by retinoic acid receptor gamma and retinoid X receptor alpha. J Biol Chem 273: 2409–2415PubMedCrossRefGoogle Scholar
  2. Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15: 226–240PubMedCrossRefGoogle Scholar
  3. Abu-Abed S, MacLean G, Fraulob V, Chambon P, Petkovich M, Dolle P (2002) Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mech Dev 110: 173–177PubMedCrossRefGoogle Scholar
  4. Bastie JN, Despouy G, Balitrand N, Rochette-Egly C, Chomienne C, Delva L (2001) The novel co-activator CRABPII binds to RARalpha and RXRalpha via two nuclear receptor interacting domains and does not require the AF-2 `core’. FEBS Lett 507: 67–73PubMedCrossRefGoogle Scholar
  5. Begemann G, Meyer A (2001) Hindbrain patterning revisited: timing and effects of retinoic acid signalling. Bioessays 23: 981–986PubMedCrossRefGoogle Scholar
  6. Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW (2001) The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development 128: 3081–3094PubMedGoogle Scholar
  7. Berggren K, McCaffery P, Drager U, Forehand CJ (1999) Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev Biol 210: 288–304PubMedCrossRefGoogle Scholar
  8. Blumberg B, Bolado J Jr, Moreno TA, Kintner C, Evans RM, Papalopulu N (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124: 373–379PubMedGoogle Scholar
  9. Budhu A, Noy N (2002) Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest. Mol Cell Biol 22: 2632–2641PubMedCrossRefGoogle Scholar
  10. Budhu A, Gillilan R, Noy N (2001) Localization of the RAR interaction domain of cellular retinoic acid binding protein-II. J Mol Biol 305: 939–949PubMedCrossRefGoogle Scholar
  11. Chen Y, Huang L, Solursh M (1994) A concentration gradient of retinoids in the early Xenopus laevis embryo. Dev Biol 161: 70–76PubMedCrossRefGoogle Scholar
  12. Chen Y, Pollet N, Niehrs C, Pieler T (2001) Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev 101: 91–103PubMedCrossRefGoogle Scholar
  13. Dekker EJ, Vaessen MJ, van den Berg C, Timmermans A, Godsave S, Holling T, Nieuwkoop P, Geurts van Kessel A, Durston A (1994) Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos. Development 120: 973–985PubMedGoogle Scholar
  14. Deltour L, Foglio MH, Duester G (1999a) Impaired retinol utilization in Adh4 alcohol dehydrogenase mutant mice. Dev Genet 25: 1–10PubMedCrossRefGoogle Scholar
  15. Deltour L, Foglio MH, Duester G (1999b) Metabolic deficiencies in alcohol dehydrogenase Adhl, Adh3, and Adh4 null mutant mice. Overlapping roles of Adhl and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J Biol Chem 274: 16796–16801PubMedCrossRefGoogle Scholar
  16. Delva L, Bastie JN, Rochette-Egly C, Kraiba R, Balitrand N, Despouy G, Chambon P, Chomienne C (1999) Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol 19: 7158–7167PubMedGoogle Scholar
  17. De Roos K, Sonneveld E, Compaan B, ten Berge D, Durston AJ, van der Saag PT (1999) Expression of retinoic acid 4-hydroxylase (CYP26) during mouse and Xenopus laevis embryogenesis. Mech Dev 82: 205–211PubMedCrossRefGoogle Scholar
  18. Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274: 23695–23698PubMedCrossRefGoogle Scholar
  19. Duester G (2000) Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur J Biochem 267: 4315–4324PubMedCrossRefGoogle Scholar
  20. Dupe V, Lumsden A (2001) Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128: 2199–2208PubMedGoogle Scholar
  21. Durston AJ, Timmermans JP, Hage WJ, Hendriks HF, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340: 140–144PubMedCrossRefGoogle Scholar
  22. Fawcett D, Pasceri P, Fraser R, Colbert M, Rossant J, Giguere V (1995) Postaxial polydactyly in forelimbs of CRABP-II mutant mice. Development. 121: 671–679PubMedGoogle Scholar
  23. Fujii H, Sato T, Kaneko S, Gotoh O, Fujii-Kuriyama Y, Osawa K, Kato S, Hamada H (1997) Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J 16: 4163–4173PubMedCrossRefGoogle Scholar
  24. Gagnon I, Duester G, Bhat PV (2002) Kinetic analysis of mouse retinal dehydrogenase type-2 (RALDH2) for retinal substrates. Biochim Biophys Acta 1596: 156–162PubMedCrossRefGoogle Scholar
  25. Gavalas A (2002) ArRAnging the hindbrain. Trends Neurosci 25: 61–64PubMedCrossRefGoogle Scholar
  26. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121–141PubMedGoogle Scholar
  27. Gorry P, Lufkin T, Dierich A, Rochette-Egly C, Decimo D, Dolle P, Mark M, Durand B, Chambon P (1994) The cellular retinoic acid binding protein I is dispensable. Proc Natl Acad Sci USA 91: 9032–9036PubMedCrossRefGoogle Scholar
  28. Grandel H, Lun K, Rauch GJ, Rhinn M, Piotrowski T, Houart C, Sordino P, Kuchler AM, SchulteMerker S, Geisler R, Holder N, Wilson SW, Brand M (2002) Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development 129: 2851–2865PubMedGoogle Scholar
  29. Grün F, Hirose Y, Kawauchi S, Ogura T, Umesono K (2000) Aldehyde dehydrogenase 6, a cytosolic retinaldehyde dehydrogenase prominently expressed in sensory neuroepithelia during development. J Biol Chem 275: 41210–41218PubMedCrossRefGoogle Scholar
  30. Haselbeck RJ, Hoffmann I, Duester G (1999) Distinct functions for Aldhl and Raldh2 in the control of ligand production for embryonic retinoid signaling pathways. Dev Genet 25: 353–364PubMedCrossRefGoogle Scholar
  31. Helms JA, Kim CH, Eichele G, Thaller C (1996) Retinoic acid signaling is required during early chick limb development. Development 122: 1385–1394PubMedGoogle Scholar
  32. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cisRetinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68: 397–406Google Scholar
  33. Hofmann C, Eichele G (1994) Retinoids in development. In: Roberts AB, Goodman DS (eds) The retinoids: biology, chemistry, and medicine. Raven Press, New York, pp 387–441Google Scholar
  34. Hollemann T, Chen Y, Grunz H, Pieler T (1998) Regionalized metabolic activity establishes boundaries of retinoic acid signalling. EMBO J 17: 7361–7372PubMedCrossRefGoogle Scholar
  35. Hu X, Lazar MA (2000) Transcriptional repression by nuclear hormone receptors. Trends Endocrinol Metab 11: 6–10PubMedCrossRefGoogle Scholar
  36. Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83: 859–869PubMedCrossRefGoogle Scholar
  37. Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89–104PubMedCrossRefGoogle Scholar
  38. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774PubMedCrossRefGoogle Scholar
  39. Koide T, Downes M, Chandraratna RA, Blumberg B, Umesono K (2001) Active repression of RAR signaling is required for head formation. Genes Dev 15: 2111–2121PubMedCrossRefGoogle Scholar
  40. Kolm PJ, Apekin V, Sive H (1997) Xenopus hindbrain patterning requires retinoid signaling. Dev Biol 192: 1–16Google Scholar
  41. Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129: 4335–4346Google Scholar
  42. Lampron C, Rochette-Egly C, Gorry P, Dolle P, Mark M, Lufkin T, LeMeur M, Chambon P (1995) Mice deficient in cellular retinoic acid binding protein II ( CRABPII) or in both CRABPI and CRABPII are essentially normal. Development 121: 539–548Google Scholar
  43. Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen JY, Staub A, Gamier JM, Mader S (1992) Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68: 377–395PubMedCrossRefGoogle Scholar
  44. Li H, Wagner E, McCaffery P, Smith D, Andreadis A, Drager UC (2000) A retinoic acid synthesizing enzyme in ventral retina and telencephalon of the embryonic mouse. Mech Dev 95: 283–289PubMedCrossRefGoogle Scholar
  45. MacLean G, Abu-Abed S, Dolle P, Tahayato A, Chambon P, Petkovich M (2001) Cloning of a novel retinoic-acid metabolizing cytochrome P450, Cyp26B1, and comparative expression analysis with Cyp26A1 during early murine development. Mech Dev 107: 195–201PubMedCrossRefGoogle Scholar
  46. Maden M (1999) Heads or tails? Retinoic acid will decide. Bioessays 21: 809–812PubMedCrossRefGoogle Scholar
  47. Maden M (2001) Role and distribution of retinoic acid during CNS development. Int Rev Cytol 209: 1–77PubMedCrossRefGoogle Scholar
  48. Mark M, Ghyselinck NB, Wendling O, Dupe V, Mascrez B, Kastner P, Chambon P (1999) A genetic dissection of the retinoid signalling pathway in the mouse. Proc Nutr Soc 58: 609–613PubMedCrossRefGoogle Scholar
  49. Mic FA, Molotkov A, Fan X, Cuenca AE, Duester G (2000) RALDH3, a retinaldehyde dehydrogenase that generates retinoic acid, is expressed in the ventral retina, otic vesicle and olfactory pit during mouse development. Mech Dev 97: 227–230PubMedCrossRefGoogle Scholar
  50. Mic FA, Haselbeck RJ, Cuenca AE, Duester G (2002) Novel retinoic acid generating activities in the neural tube and heart identified by conditional rescue of Raldh2 null mutant mice. Development 129: 2271–2282PubMedGoogle Scholar
  51. Molotkov A, Fan X, Deltour L, Foglio MH, Martras S, Farres J, Pares X, Duester G (2002) Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci USA 99: 5337–5342PubMedCrossRefGoogle Scholar
  52. Napoli JL (1999) Interactions of retinoid binding proteins and enzymes in retinoid metabolism. Biochim Biophys Acta 1440: 139–162PubMedCrossRefGoogle Scholar
  53. Nelson DR (1999) A second CYP26 P450 in humans and zebrafish• CYP26B1. Arch Biochem Biophys 371: 345–347PubMedCrossRefGoogle Scholar
  54. Niederreither K, McCaffery P, Drager UC, Chambon P, Dolle P (1997) Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech Dev 62: 67–78PubMedCrossRefGoogle Scholar
  55. Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21: 444 448Google Scholar
  56. Niederreither K, Abu-Abed S, Schuhbaur B, Petkovich M, Chambon P, Dolle P (2002a) Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development. Nat Genet 31: 84–88PubMedGoogle Scholar
  57. Niederreither K, Fraulob V, Gamier JM, Chambon P, Dolle P (2002b) Differential expression of retinoic acid-synthesizing ( RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech Dev 110: 165–171Google Scholar
  58. Noy N (2000) Retinoid-binding proteins: mediators of retinoid action. Biochem J 348:481–495 Padmanabhan R (1998) Retinoic acid-induced caudal regression syndrome in the mouse fetus. Reprod Toxicol 12: 139–151Google Scholar
  59. Pijnappel WW, Hendriks HF, Folkers GE, van den Brink CE, Dekker EJ, Edelenbosch C, van der Saag PT, Durston AJ (1993) The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature 366: 340–344PubMedCrossRefGoogle Scholar
  60. Ray WI, Bain G, Yao M, Gottlieb DI (1997) CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family. J Biol Chem 272: 18702–18708PubMedCrossRefGoogle Scholar
  61. Ross SA, McCaffery PJ, Drager UC, de Luca LM (2000) Retinoids in embryonal development. Physiol Rev 80: 1021–1054PubMedGoogle Scholar
  62. Ruiz i Altaba A, Jessell T (1991) Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev 5: 175–187CrossRefGoogle Scholar
  63. Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, Rossant J, Hamada H (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15: 213–225PubMedCrossRefGoogle Scholar
  64. Sive HL, Draper BW, Harland RM, Weintraub H (1990) Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev 4: 932–942PubMedCrossRefGoogle Scholar
  65. Sonneveld E, van den Brink CE, Tertoolen LG, van der Burg B, van der Saag PT (1999) Retinoic acid hydroxylase (CYP26) is a key enzyme in neuronal differentiation of embryonal carcinoma cells. Dev Biol 213: 390–404PubMedCrossRefGoogle Scholar
  66. Stafford D, Prince V (2002) Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol 12: 1215–1220PubMedCrossRefGoogle Scholar
  67. Suzuki R, Shintani T, Sakuta H, Kato A, Ohkawara T, Osumi N, Noda M (2000) Identification of RALDH-3, a novel retinaldehyde dehydrogenase, expressed in the ventral region of the retina. Mech Dev 98: 37–50PubMedCrossRefGoogle Scholar
  68. Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G (1999) Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol 216: 282–296PubMedCrossRefGoogle Scholar
  69. Van der Wees J, Schilthuis JG, Koster CH, Diesveld-Schipper H, Folkers GE, van der Saag PT, Dawson MI, Shudo K, van der Burg B, Durston AJ (1998) Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain. Development 125: 545–556PubMedGoogle Scholar
  70. Wendling O, Dennefeld C, Chambon P, Mark M (2000) Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 127: 1553–1562PubMedGoogle Scholar
  71. Wendling O, Ghyselinck NB, Chambon P, Mark M (2001) Roles of retinoic acid receptors in early embryonic morphogenesis and hindbrain patterning. Development 128: 2031–2038PubMedGoogle Scholar
  72. White JA, Guo YD, Baetz K, Beckett-Jones B, Bonasoro J, Hsu KE, Dilworth FJ, Jones G, Petkovich M (1996) Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem 271: 29922–29927PubMedCrossRefGoogle Scholar
  73. White JA, Beckett-Jones B, Guo YD, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450. J Biol Chem 272: 18538–18541Google Scholar
  74. White JA, Ramshaw H, Taimi M, Stangle W, Zhang A, Everingham S, Creighton S, Tam SP, Jones G, Petkovich M (2000) Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism. Proc Natl Acad Sci USA 97: 6403–6408PubMedCrossRefGoogle Scholar
  75. Zhang XK, Hoffmann B, Tran PB, Graupner G, Pfahl M (1992a) Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355: 441–446PubMedCrossRefGoogle Scholar
  76. Zhang XK, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G, Hermann T, Tran P, Pfahl M (1992b) Homodimer formation of retinoid X receptor induced by 9-cis-retinoic acid. Nature 358: 587–591PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yonglong Chen
    • 1
  • Thomas Hollemann
    • 1
  • Tomas Pieler
    • 1
  1. 1.Institut für Biochemie und Molekulare ZellbiologieGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations