Skip to main content

Basic Helix-Loop-Helix Proneural Genes and Neurogenesis in Xenopus Embryos

  • Chapter
The Vertebrate Organizer

Abstract

During vertebrate development, gastrulation establishes the three germ layers, ectoderm, mesoderm and endoderm, which characterize the triploblastic species. The ectoderm forms the outer layer and gives rise to the epidermis, the central nervous system (CNS), the peripheral nervous system (PNS), the placodes (nasal, lens, otic, and lateral line), and various glandular tissues. In Xenopus, the neurectoderm appears during gastrulation primarily as a consequence of the inhibition of bone morphogenetic proteins (BMPs) which act as epidermalizing agents. Inhibition occurs via the secretion of inhibitory signals from the organizer, that bind and antagonize the activity of BMPs, and also includes transcriptional repression of BMP gene expression (Munoz-Sanjuan and Brivanlou 2002). During neural development, the next important step is to define when and where neural precursors can exit the mitotic cell cycle. These differentiating progenitor cells produce either neurons or glia, the two major building blocks of the nervous system. This process takes place simultaneously with the progressive regionalization of the neural plate to give rise to postmitotic cells with distinct identities at different positions within the neurectoderm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akamatsu W, Okano HJ, Osumi N, Inoue T, Nakamura S, Sakakibara S, Miura M, Matsuo N, Darnell RB, Okano H (1999) Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proc Natl Acad Sci USA 96: 9885–9890

    Article  PubMed  CAS  Google Scholar 

  • Antic D, Lu N, Keene JD (1999) ELAV tumor antigen, Hel-N1, increases translation of neurofilament M mRNA and induces formation of neurites in human teratocarcinoma cells. Genes Dev 13: 449–461.

    Article  PubMed  CAS  Google Scholar 

  • Armisen R, Fuentes R, Olguin P, Cabrejos ME, Kukuljan M (2002) Repressor element-1 silencing transcription/neuron-restrictive silencer factor is required for neural sodium channel expression during development of Xenopus. J Neurosci. 222: 8347–8351

    Google Scholar 

  • Bagrodia S, Cerione RA (1999) Pak to the future. Trends Cell Biol 9: 350–355

    Article  PubMed  CAS  Google Scholar 

  • Bao J, Talmage DA, Role LW, Gautier J (2000) Regulation of neurogenesis by interactions between HEN1 and neuronal LMO proteins. Development 127: 425–435

    PubMed  CAS  Google Scholar 

  • Bellefroid, EJ, Bourguignon C, Holleman T, Ma Q, Anderson D, Kintner C, Pieler T (1996) XMyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation. Cell 87: 1191–1202

    Article  PubMed  CAS  Google Scholar 

  • Bellefroid EJ, Kobbe A, Gruss P, Pieler T, Gurdon JB, Papalopulu N (1998) Xiro3 encodes a Xenop us homolog of the Drosophila Iroquois genes and functions in neural specification. EMBO J 17: 191–203

    Article  PubMed  CAS  Google Scholar 

  • Bertrand N, Castro D, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3: 517–530

    Article  PubMed  CAS  Google Scholar 

  • Blader P, Fischer N, Gradwohl G, Guillemot F, Strähle U (1997) The activity of Neurogenin 1 is controlled by local cues in the zebrafish embryo. Development 124: 4557–4569

    PubMed  CAS  Google Scholar 

  • Brewster R, Lee J, Ruiz i Altaba A (1998) Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 393: 579–583

    Article  PubMed  CAS  Google Scholar 

  • Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T (1998) Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125: 4821–4833

    PubMed  CAS  Google Scholar 

  • Brown NL, Patel S, Brezinski JA, Glaser T (2001) Math5 is required for retinal ganglion cell and optic nerve development. Development 128: 2497–2508

    PubMed  CAS  Google Scholar 

  • Burns CJ, Vetter ML (2002) Xaths regulates neurogenesis in the Xenopus olfactory placodes. Dev Dynam 225: 536–543

    Article  CAS  Google Scholar 

  • Cao Y, Zhao H, Grunz H (2002) XETOR regulates the size of the proneural domain during primary neurogenesis in Xenopus laevis. Mech Dev 119: 1–35

    Article  Google Scholar 

  • Chalmers AD, Welchman D, Papalopulu N (2002) Intrinsic differences betwenn the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Developmental Cell 2: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Chien C-T, Hsiao C-D, Jan LY, Jan YN (1996) Neuronal type information encoded in the basichelix-loop-helix domain of proneural genes. Proc Natl Acad Sci USA 93: 13239–13244

    Article  PubMed  CAS  Google Scholar 

  • Chitnis A, Kintner C (1996) Sensitivity of proneural genes to lateral inhibition affects the pattern of primary neurons in Xenopus embryos. Development 122: 2295–2301

    PubMed  CAS  Google Scholar 

  • Chitnis A, Henrique D, Lewis J, Ish-Horowicz D, Kintner C (1995) Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375: 761–766

    Article  PubMed  CAS  Google Scholar 

  • Cornell RA, Eisen JS (2002) Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 129: 2639–2648

    PubMed  CAS  Google Scholar 

  • Davis RL, Turner DL (2001) Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20: 8342–8357

    Article  PubMed  CAS  Google Scholar 

  • Deblandre GA, Wettstein DA, Koyano-Nakagawa N, Kintner C (1999) A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126, 4715–4728

    PubMed  CAS  Google Scholar 

  • De la Calle-Mustienes EL, Glavic A, Modolell J, Gomez-Skarmeta J (2002) Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma. Mech Dev 119: 69–80

    Article  Google Scholar 

  • Deschênes-Furry J, Belanger G, Perrone-Bizzozero N, Jasmin BJ(2003) Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD. J Biol Chem 278: 5710–5717

    Google Scholar 

  • Dorsky RI, Rapaport, Harris WA (1995) Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14: 487–496

    Article  PubMed  CAS  Google Scholar 

  • Dubois L, Bally-Cuif L, Crozatier M, Moreau J, Paquereau L, Vincent A (1998) Xcoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus. Curr Biol 8: 199–209

    Article  PubMed  CAS  Google Scholar 

  • Farah MH, Olson JM, Sucic HB, Hume RI, Tapscott SJ, Turner DL (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127: 693–702

    PubMed  CAS  Google Scholar 

  • Ferreiro B, Skoglund P, Bailey A, Dorsky R, Harris WA (1992) Xashl, a Xenopus homolog of achaete-scute: a proneural gene in anterior regions of the vertebrate CNS. Mech Dev 40: 25–36

    Article  Google Scholar 

  • Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M, Goridis C, Guillemot F (1998) The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20: 483–494

    Article  PubMed  CAS  Google Scholar 

  • Forehand CJ, Farel PB (1982) Spinal cord development in anuran larvae. I. Primary and secondary neurons. J Comp Neurol 209: 395–408

    Google Scholar 

  • Franco PG, Paganelli A, Lopez SL, Carrasco AE (1999) Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development 126: 4257–4265

    PubMed  CAS  Google Scholar 

  • Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL (2000) rax, HES1, and Notchl promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron 26: 383–394

    Google Scholar 

  • Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notchl signaling in the murine forebrain. Neuron 26: 395–404

    Article  PubMed  CAS  Google Scholar 

  • Ge W, Martinowich K, Wu X, He F, Miyamoto A, Fan G, Weinmaster G, Sun YE (2002) Notch signaling promotes astrogliogenesis via direct CSL-mediated glial gene activation. J Neurosci Res 69: 848–860

    Article  PubMed  CAS  Google Scholar 

  • Gershon A, Rudnick J, Kalam L, Zimmerman K (2000) The homeodomain-containing gene Xdbx inhibits neuruonal differenciation in the developing embryo. Development 127: 2945–2954

    PubMed  CAS  Google Scholar 

  • Gomez-Skarmeta JL, Glavic A, de la Calle-Mustienes E, Modolell J, Mayor R (1998) Xiro, a Xenopus homolog of the Drosophila Iroquois complex genes, controls development at the neural plate. EMBO J 17: 181–190

    CAS  Google Scholar 

  • Gomez-Skarmeta J, de La Calle-Mustienes E, Modolell J (2001) The Wnt-activated Xirol gene encodes a repressor that is essential for neural development and downregulates Bmp4. Development 128: 551–560

    CAS  Google Scholar 

  • Hardcastle Z, Papalopulu N (2000) Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27x1c1 and imparting a neural fate. Development 127: 1303–1314

    PubMed  CAS  Google Scholar 

  • Harris WA, Perron M (1998) Molecular recapitulation: the growth of the vertebrate retina. Int J Dev Biol 42: 299–304

    PubMed  CAS  Google Scholar 

  • Hutcheson DA, Vetter ML (2001) The bHLH factors Xath5 and XNeuroD can upregulate the expression of XBrn3d, a POU-homeodomain transcription factor. Dev Biol 232: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Kanekar S, Perron M, Dorsky R, Harris WA, Jan LY, Vetter ML (1997) Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19: 981–994

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Bae YK, Yamanaka Y, Yamashita S, Shimizu T, Fujii R, Park HC, Yeo SY, Huh TL, Hibi M, Hirano T (1997) Overexpression of neurogenin induces ectopic expression of HuC in zebrafish. Neurosci Lett 239: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Kim P, Helms AW, Johnson JE, Zimmerman K (1997) Xathl, a vertebrate homolog of Drosophila atonal, induces neuronal differentiation within ectodermal progenitors. Dev Biol 187: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Kintner C (2002) Neurogenesis in embryos and in adult neural stem cells. J Neurosci 22: 639–643

    PubMed  CAS  Google Scholar 

  • Koyano-Nakagawa N, Wettstein D, Kintner C (1999) Activation of Xenopus genes required for lateral inhibition and neuronal differentiation during primary neurogenesis. Mol Cell Neurosci 14: 327–339

    Article  PubMed  CAS  Google Scholar 

  • Koyano-Nakagawa N, Kim J, Anderson D, Kintner C (2000) Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal diferentiation. Development 127: 4203–4216

    PubMed  CAS  Google Scholar 

  • Lahaye K, Kricha S, Bellefroid EJ (2002) XNAP, a conserved ankyrin repeat-containing protein with a role in the Notch pathway during Xenopus primary neurogenesis. Mech Dev 110: 113–124

    Article  PubMed  CAS  Google Scholar 

  • Lamar E, Kintner C, Goulding M (200la) Identification of NKL, a novel Gli-Kruppel zinc finger protein that promotes neuronal differentiation. Development 128: 1335–1346

    Google Scholar 

  • Lamar E, Deblandre G, Wettstein D, Gawantka V, Pollet N, Niehrs C, Kintner C (200 lb) Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev 15: 1885–1899

    Google Scholar 

  • Lee JE, Hollenberg S, Snider L, Turner DL, Lipnick N, Weintraub H (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268: 836–844

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Wu Y, Qi W, Xue H, Liu Y, Scheel D, German M, Qiu M, Guillemot F, Rao M (2003) Neurogenin3 participates in gliogenesis in the developing vertebrate spinal cord. Dev Biol 253: 8498

    Article  Google Scholar 

  • Lo L, Dormand E, Greenwood A, Anderson DJ (2002) Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultures of neural progenitor cells. Development 129: 1553–1567

    PubMed  CAS  Google Scholar 

  • Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ (1998) Neurogeninl is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20: 469–482

    Article  PubMed  CAS  Google Scholar 

  • Marcus EA, Kintner C, Harris W (1998) The role of GSK3beta in regulating neuronal differentiation in Xenopus laevis. Mol Cell Neurosci 12: 269–280

    Article  PubMed  CAS  Google Scholar 

  • Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20: 429–440

    Article  PubMed  CAS  Google Scholar 

  • Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y (1998a) Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125: 579–587

    Google Scholar 

  • Mizuseki K, Kishi M, Shiota K, Nakanishi S, Sasai Y (1998b) SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos. Neuron 21: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Moore KB, Schneider ML, Vetter M (2002) Posttranslational mechanisms control the timing of bHLH function and regulate retinal cell fate. Neuron 34: 183–195

    Article  PubMed  CAS  Google Scholar 

  • Moreno TA, Bronner-Fraser M (2001) The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus. Dev Biol 240: 340–360

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101: 499–510

    Article  PubMed  CAS  Google Scholar 

  • Morrow EM, Furukawa T, Lee JE, Cepko CL (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126: 126–136

    Google Scholar 

  • Mumm J, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228: 151–165

    Article  PubMed  CAS  Google Scholar 

  • Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Nieto M, Schurmans C, Britz O, Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29: 401–413

    Article  PubMed  CAS  Google Scholar 

  • Ohmuna S, Philpott A, Wang K, Holt CE, Harris WA (1999) p27Xicl, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99: 499–510

    Google Scholar 

  • Ohnuma S, Philpott A, Harris WA (2001) Cell-cycle and cell fate in the nervous system. Curr Opin Neurobiol 11: 66–73

    Article  PubMed  CAS  Google Scholar 

  • Ohnuma S, Hopper S, Wang KC, Philpott A, Harris W (2002) Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development 129: 2435–2446

    PubMed  CAS  Google Scholar 

  • Olson EC, Schinder AF, Dantzker J, Marcus EA, Spitzer NC, Harris WA (1998) Properties of ectopic neurons induced by Xenopus neurogeninl misexpression. Mol Cell Neurosci 12: 281–299

    Article  PubMed  CAS  Google Scholar 

  • Papalopulu N, Kintner C (1996) A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neurectoderm. Development 122: 3409–3418

    PubMed  CAS  Google Scholar 

  • Park HC, Kim CH, Bae YK, Yeo SY, Kim SH, Hong SK, Shin J, Yoo KW, Hibi M, Hirano T, Miki N, Chitnis AB, Huh TL (2000) Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227: 279–293

    Article  PubMed  CAS  Google Scholar 

  • Perron M, Harris WA (1999) Cellular determination in amphibian retina. In: Moody SA (ed) Cell fate and cell lineage determination. Academic Press, San Diego, pp 353–368

    Chapter  Google Scholar 

  • Perron M, Harris WA (2000) Determination of veretebrate retinal progenitor cell fate by the Notch pathway and basic helix-loop-helix transcription factors. Cell Mol Life Sci 57: 215–223

    Article  PubMed  CAS  Google Scholar 

  • Perron M, Kanekar S, Vetter M, Harris WA (1998) The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol 199: 185–200

    Article  PubMed  CAS  Google Scholar 

  • Perron M, Furrer M-P, Wegnez M, Theodore L (1999) Xenopus elav-like genes are differentially expressed during neurogenesis. Mech Dev 84: 139–142

    Google Scholar 

  • Perron M, Opdecamp K, Butler K, Harris WA, Bellefroid EJ (1999) X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina. Proc Natl Acad Sci USA 96: 14996–15001

    Article  PubMed  CAS  Google Scholar 

  • Perrone-Bizzozero N, Bolognani F (2002) Role of HuD and other RNA-binding proteins in neural development and plasticity. J Neurosci Res 68: 121–126

    Article  PubMed  CAS  Google Scholar 

  • Pozzoli O, Bosetti A, Croci L, Consalez GG, Vetter M (2001) Xebf3 is a regulator of neuronal diferentiation during primary neurogenesis in Xenopus. Dev Biol 233: 495–512

    Article  PubMed  CAS  Google Scholar 

  • Ramain P, Khechumian R, Arbogast N, Ackermann C, Heitzler P (2000) Interactions between chip and the achaete/scute-daughterless heterodimers are required for pannier-driven pro-neural patterning. Mol Cell 6: 781–790

    Article  PubMed  CAS  Google Scholar 

  • Scheer N, Groth A, Hans S, Campos-Ortega JA (2001) An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 128: 1099–1107

    PubMed  CAS  Google Scholar 

  • Schlosser G, Koyano-Nakagawa N (2002) Thyroid hormone promotes neurogenesis in the Xenopus spinal cord. Developmental Dynamics 225: 485–498

    Article  PubMed  CAS  Google Scholar 

  • Schneider ML, Turner DL, Vetter ML (2001). Notch signaling can inhibit Xath5 function in the neural plate and developing retina. Mol Cell Neurosci 18: 458–472

    Article  PubMed  CAS  Google Scholar 

  • Schneider ML, Turner DL, Vetter ML (2001) Notch signalling can inhibit Xath5 function in the neural plate and developing retina. Mol Cell Neurosci 18: 458–472

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Moore M, Marcora E, Lee JE, Qiu Y, Samaras S, Stein R (1999) The NeuroDl/Beta2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol Cell Biol 19: 704–713

    PubMed  CAS  Google Scholar 

  • Sharpe C, Goldstone K (2000) Retinoid signalling acts during the gastrula stages to promote primary neurogenesis. Int J Dev Biol 44: 463–470

    PubMed  CAS  Google Scholar 

  • Souopgui J, Solter M, Pieler T (2002) XPak3 promotes cell cycle withdrawal during primary neurogenesis in Xenopus laevis. EMBO J 21: 6429–6439

    Article  PubMed  CAS  Google Scholar 

  • Sriuranpong V, Borges MW, Strock CL, Nakakura EK, Watkins DN, Blaumueller CM, Nelkin BD, Ball DW (2002) Notch signaling induces rapid degradation of achaete-scute homolog 1. Mol Cell Biol 22: 3129–3139

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Taelman V, Opdecamp K, Avalosse B, Ryan K, Bellefroid EJ (2001) Xath2, a bHLH gene expressed during a late transition stage of neurogenesis in the forebrain of Xenopus embryos. Mech Dev 101: 199–202

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi T, Takahashi S, Yokota C, Tsuda H, Nakanishi S, Asashima M, Kageyama R (1997) Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal. EMBO J 16: 384–395

    Article  PubMed  CAS  Google Scholar 

  • Talikka M, Perez S, Zimmerman K (2002) Distinct patterns of downstream target activation are specified by the helix-loop-helix domain of proneural basic helix-loop-helix transcription factors. Dev Biol 247: 137–148

    Article  PubMed  CAS  Google Scholar 

  • Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, Kageyama R (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versusglial fate determination in the central nervous system. EMBO J 19: 5460–5472

    Article  PubMed  CAS  Google Scholar 

  • Turner DL, Weintraub H (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev 8: 1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Vernon AE, Devine C, Philpott A (2003) The cdk inhbibitor p27X1l is required for differentiation of primary neurones in Xenopus. Development 130: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Vetter M (2001) A turn of the helix: preventing the glia fate. Neuron 29: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Wang SW, Kim BS, Ding K, Wang H, Sun D, Johnson RL, Klein WH, Gan L (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15: 24–29

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Kprzh V, Gong Z (2002) The functional specificity of NeuroD is defined by a single amino acid residue ( Nll) in the basic domain. FEBS Lett 520: 139–144

    Google Scholar 

  • Weintraub H (1993) The MyoD family and myogenesis: redundancy, networks and thresholds. Cell 75: 1241–1244

    Article  PubMed  CAS  Google Scholar 

  • Wettstein DA, Turner DL, Kintner C (1997) The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124: 693–702

    PubMed  CAS  Google Scholar 

  • Zimmerman K, Shih J, Bars J, Collazo A, Anderson A, Anderson DJ (1993) Xash-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate. Development 119: 221–232

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bellefroid, E., Souopgui, J. (2004). Basic Helix-Loop-Helix Proneural Genes and Neurogenesis in Xenopus Embryos. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics