Skip to main content

Maternal VegT and ß-Catenin: Patterning the Xenopus Blastula

  • Chapter
  • 151 Accesses

Abstract

Loss of the maternal T-box transcription factor VegT has a devastating effect on development. Embryos fail to gastrulate, lack the expression of all early zygotic genes characteristic of the endoderm germ layer and also fail to activate ventral, general and dorsal mesodermal gene expression (Zhang et al. 1998; Kofron et al. 1999; Xanthos et al. 2001, 2002). All activity in the activin receptor/Smad 2 signaling pathway is lost (Lee et al. 2001). Embryos depleted of maternal ß-catenin (and therefore deprived of maternal Wnt signaling) also have severe defects. Gastrulation is delayed, embryos develop without heads, dorsal axes and tails and lack neural, dorsal mesodermal and dorsal endodermal gene expression (Heasman et al. 1994; Wylie et al. 1996; Xanthos et al. 2002). Many early zygotic genes have been shown to be targets of these two signaling pathways (see Xanthos et al. 2002 for the expression profiles of zygotic genes in VegT- and β-catenin-embryos). The challenge now is to understand the networks downstream of VegT and ß-catenin that are responsible for embryonic patterning. In particular, two aspects of patterning will be considered here: cell fate specification in the animal-vegetal axis, and asymmetrical gene expression in the dorso-ventral axis of the embryo during the late blastula to early gastrula stages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agius E, Oelgeschlager M, Wessely O, Kemp C, de Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127: 1173–1183

    PubMed  CAS  Google Scholar 

  • Alexander J, Stainier DY (1999) A molecular pathway leading to endoderm formation in zebra-fish. Curr Biol 9: 1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382: 638–642

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester T, Kim S, Sasai Y, Lu B, de Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601

    Article  PubMed  CAS  Google Scholar 

  • Carnac G, Kodjabachian L, Gurdon JB, Lemaire P (1996) The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122: 3055–3065

    PubMed  CAS  Google Scholar 

  • Chang C, Hemmati-Brivanlou A (2000) A post-mid-blastula transition requirement for TGFbeta signaling in early endodermal specification. Mech Dev 90: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Crease DJ, Dyson S, Gurdon JB (1998) Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression. Proc Natl Acad Sci USA 95: 4398–4403

    Article  PubMed  CAS  Google Scholar 

  • Frank D, Harland RM (1991) Transient expression of XMyoD in non-somitic mesoderm of Xenopus gastrulae. Development 113: 1387–1393

    PubMed  CAS  Google Scholar 

  • Green JB, Smith JC (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347: 391–394

    Article  PubMed  CAS  Google Scholar 

  • Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B, McCrea P, Kintner C, Noro CY, Wylie C (1994) Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79: 791–803

    Article  PubMed  CAS  Google Scholar 

  • Henry GL, Melton DA (1998) Mixer, a homeobox gene required for endoderm development. Science 281: 91–96

    Article  PubMed  CAS  Google Scholar 

  • Horb ME, Thomsen GH (1997) A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Development 124: 1689–1698

    PubMed  CAS  Google Scholar 

  • Houston DW, Kofron M, Resnik E, Langland R, Destree O, Wylie C, Heasman J (2002) Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development 129: 4015–4025

    PubMed  CAS  Google Scholar 

  • Hudson C, Clements D, Friday RV, Stott D, Woodland HR (1997) Xsoxl7alpha and -beta mediate endoderm formation in Xenopus. Cell 91: 397–405

    Article  PubMed  CAS  Google Scholar 

  • Hyde CE, Old RW (2000) Regulation of the early expression of the Xenopus nodal-related 1 gene, Xnrl. Development 127: 1221–1229

    Google Scholar 

  • Jones CM, Broadbent J, Thomas PQ, Smith JC, Beddington RS (1999) An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Curr Biol 9: 946–954

    Article  PubMed  CAS  Google Scholar 

  • Kimelman D, Griffin KJ (1998) Mesoderm induction: a postmodern view. Cell 94: 419–421

    Article  PubMed  CAS  Google Scholar 

  • Kodjabachian L, Karavanov AA, Hikasa H, Hukriede NA, Aoki T, Taira M, Dawid IB (2001) A study of Xliml function in the Spemann-Mangold organizer. Int J Dev Biol 45: 209–218

    PubMed  CAS  Google Scholar 

  • Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126: 5759–5770

    Google Scholar 

  • Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT (1997) Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 136: 1123–1136

    Article  PubMed  CAS  Google Scholar 

  • Lee MA, Heasman J, Whitman M (2001) Timing of endogenous activin-like signals and regional specification of the Xenopus embryo. Development 128: 2939–2952

    PubMed  CAS  Google Scholar 

  • Lemaire P, Garrett N, Gurdon JB (1995) Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Lerchner W, Latinkic BV, Remade JE, Huylebroeck D, Smith JC (2000) Region-specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos. Development 127: 2729–2739

    PubMed  CAS  Google Scholar 

  • Lustig KD, Kroll KL, Sun EE, Kirschner MW (1996) Expression cloning of a Xenopus T-related gene ( Xombi) involved in mesodermal patterning and blastopore lip formation. Development 122: 4001–4012

    Google Scholar 

  • Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86: 391–399

    Article  PubMed  CAS  Google Scholar 

  • Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW (2000) Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann’s organizer. Nature 403: 781–785

    Article  PubMed  CAS  Google Scholar 

  • Osada SI, Saijoh Y, Frisch A, Yeo CY, Adachi H, Watanabe M, Whitman M, Hamada H, Wright CV (2000) Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127: 2503–2514

    PubMed  CAS  Google Scholar 

  • Rex M, Hilton E, Old R (2002) Multiple interactions between maternally-activated signalling pathways control Xenopus nodal-related genes. Int J Dev Biol 46: 217–226

    PubMed  CAS  Google Scholar 

  • Rupp RA, Weintraub H (1991) Ubiquitous MyoD transcription at the midblastula transition precedes induction-dependent MyoD expression in presumptive mesoderm of X. laevis. Cell 65: 927–937

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57: 191–198

    Article  PubMed  CAS  Google Scholar 

  • Schohl A, Fagotto F (2002) Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129: 37–52

    PubMed  CAS  Google Scholar 

  • Smith WC, McKendry R, Ribisi S, Harland RM (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Stainier DY (2002) A glimpse into the molecular entrails of endoderm formation. Genes Dev 16: 893–907

    Article  PubMed  CAS  Google Scholar 

  • Steinbeisser H, de Robertis EM (1993) Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity. C R Acad Sci III 316:959–971

    Google Scholar 

  • Steinbeisser H, de Robertis EM, Ku M, Kessler DS, Melton DA (1993) Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs. Development 118: 499–507

    Google Scholar 

  • Stennard F, Carnac G, Gurdon JB (1996) The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation. Development 122: 41794188

    Google Scholar 

  • Stennard F, Zorn AM, Ryan K, Garrett N, Gurdon JB (1999) Differential expression of VegT and Antipodean protein isoforms in Xenopus. Mech Dev 86: 87–98

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127: 5319–5329

    PubMed  CAS  Google Scholar 

  • Watabe T, Kim S, Candia A, Rothbacher U, Hashimoto C, Inoue K, Cho KW (1995) Molecular mechanisms of Spemann’s organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev 9: 3038–3050

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Symes CE, Walmsley ME, Rodaway AR, Patient RK (2000) A role for GATA5 in Xenopus endoderm specification. Development 127: 4345–4360

    PubMed  CAS  Google Scholar 

  • White RJ, Sun BI, Sive HL, Smith JC (2002) Direct and indirect regulation of derriere, a Xenopus mesoderm-inducing factor, by VegT. Development 129: 4867–4876

    PubMed  CAS  Google Scholar 

  • Wylie C, Kofron M, Payne C, Anderson R, Hosobuchi M, Joseph E, Heasman J (1996) Maternal betacatenin establishes a ‘dorsal signal’ in early Xenopus embryos. Development 122: 2987–2996

    PubMed  CAS  Google Scholar 

  • Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128: 167–180

    PubMed  CAS  Google Scholar 

  • Xanthos JB, Kofron M, Tao Q, Schaible K, Wylie C, Heasman J (2002) The roles of three signaling pathways in the formation and function of the Spemann organizer. Development 129: 4027–4043

    PubMed  CAS  Google Scholar 

  • Zhang J, King ML (1996) Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development 122: 4119–4129

    Google Scholar 

  • Zhang J, Houston DW, King ML, Payne C, Wylie C, Heasman J (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94: 515–524

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kofron, M., Xanthos, J., Heasman, J. (2004). Maternal VegT and ß-Catenin: Patterning the Xenopus Blastula. In: Grunz, H. (eds) The Vertebrate Organizer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10416-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10416-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05732-8

  • Online ISBN: 978-3-662-10416-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics