Skip to main content

Information Measures

  • Chapter
  • 117 Accesses

Abstract

It has long been assumed that different features of the environment are represented by different firing patterns of neurons in the brain. But it is unclear how information is encoded in the string of action potentials that stimulated neurons produce. Early studies of the activity of peripheral neurons seemed to demonstrate the existence of a neural code that represented the intensity of an external stimulus by the frequency of firing. These results have been developed into the rate coding or firing frequency theory, which implies that a neuron signals changes in the information it represents by changes in the number of impulses it produces in a period of time. The neuron integrates all the spikes reaching it over a certain sample period and produces a response over that period. Thus, each neuron functions as an “integrate-and-fire” device.1 More recently it has been suggested that the temporal pattern of the spikes, and the interval between them, may also encode information about a stimulus.2–7

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shadlen MN, Newsome WT. Noise neural codes and cortical organization. Curr Op Neurobiol 1994; 4:569–579.

    Article  PubMed  CAS  Google Scholar 

  2. McClurkin JW, Optican L, Richmond BJ, Gawne T. Concurrent processing and complexity of temporally encoded neuronal messages in visual perception. Science 1991; 25:675–677.

    Article  Google Scholar 

  3. Bialek W, Rieke F. Reliability and information transmission in spiking neurons. Trends in Neurosciences 1992; 15:428–434.

    Article  PubMed  CAS  Google Scholar 

  4. Richmond BJ, Gawne TJ, Jin G-X. Neuronal codes: Reading them and learning how their structure influences network organization. Biosystems 1997; 40:149–157.

    Article  PubMed  CAS  Google Scholar 

  5. Sejnowski TJ. Anatomical specializations of neurons and their contribution to coincidence detection. In: Konnerth A, Tsien RY, Mikoshiba K, Altman J eds. Coincidence Detection in the Nervous System. Strasbourg: HFSP 1996; 151–159.

    Google Scholar 

  6. Softky WR. Simple codes versus efficient codes. Curr Op Neurobiol 1995; 5:239–247.

    Article  PubMed  CAS  Google Scholar 

  7. van Steveninck RRD, Lewen GD, Strong SP, Koberle R, Bialek W. Reproducibility and variability in neural spike trains. Science, 1997; 275:1805–1808.

    Article  Google Scholar 

  8. McClurkin JW, Optican LM. Primate striate and prestriate cortical neurons during discrimination 1. Simultaneous temporal encoding of information about color and pattern. J Neurophysiol 1996; 75:481–495.

    PubMed  CAS  Google Scholar 

  9. Zeki S. Color coding in the cerebral cortex: The responses of wavelength-selective and color-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience 1983; 9:741–765.

    Article  PubMed  CAS  Google Scholar 

  10. Gallant JL, Braun J, Van Essen DC. Selectivity for polar hyperbolic and cartesian gratings in macaque visual cortex. Science 1993; 259:100–103.

    Article  PubMed  CAS  Google Scholar 

  11. Zeki S. A Vision of the Brain. Oxford: Blackwell Scientific Publications. 1993.

    Google Scholar 

  12. Shipp S, Zeki S. Segregation of pathways leading from leading from V2 to V4 and V5 of macaque monkey visual cortex. Nature 1985; 315:322–325.

    Article  PubMed  CAS  Google Scholar 

  13. Zeki S, Shipp S. The functional logic of cortical connections. Nature 1988; 335:311–317.

    Article  PubMed  CAS  Google Scholar 

  14. Schiller PH, Lee K. The role of primate extrastriate V4 in vision. Science 1991; 251:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  15. Ghose GM, Ts’o DY. Form processing modules in primate area V4. J Neurophysiol 1997; 77:2191–2196.

    PubMed  CAS  Google Scholar 

  16. Richmond BJ, Optican LM. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex II. Quantification of response waveform. J Neurophysiol 1987; 57:147–161.

    PubMed  CAS  Google Scholar 

  17. Richmond BJ, Optican LM. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex II. Information transmission. J Neurophysiol 1990; 64:370–380.

    PubMed  CAS  Google Scholar 

  18. Optican LM, Richmond BJ. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. J Neurophysiol 1987; 57:162–178.

    PubMed  CAS  Google Scholar 

  19. Richmond BJ, Optican LM, Podell M, Spitzer H. Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. J Neurophysiol 1987; 57:132–146.

    PubMed  CAS  Google Scholar 

  20. Tovée MJ, Rolls ET, Treves A, Bellis RP. Information encoding and the responses of single neurons in the primate temporal visual cortex. J Neurophysiol 1993; 70:640–654.

    PubMed  Google Scholar 

  21. Tovée MJ, Rolls ET. Information encoded in short firing rate epochs by single neurons in the primate temporal visual cortex. Visual Cognition 1995; 2:35–58.

    Article  Google Scholar 

  22. Panzeri S, Biella G, Rolls ET, Skaggs WE, Treves A. Speed, noise, information and the graded nature of neuronal responses. Network-Computation in Neural Systems 1996; 7:365–370.

    Article  CAS  Google Scholar 

  23. Optican LM, Gawne TJ, Richmond BJ, Joseph PJ. Unbiased measures of transmitted information and channel capacity from multivariate neuronal data. Biol Cybern 1991; 65:305–310.

    Article  PubMed  CAS  Google Scholar 

  24. Fotheringhame D, Young MP. Is temporally coded information in spike trains due to the signal or the noise? J Comput Neurosci 1998: in press.

    Google Scholar 

  25. Rolls ET, Treves A, Tovée MJ. The representational capacity of the distributed encoding of information provided by populations of neurons in the primate temporal visual cortex. Exp Brain Res 1997; 114:149–162.

    Article  PubMed  CAS  Google Scholar 

  26. Britten KH, Shadlen MN, Newsome WT, Movshon JA. The analysis of visual motion. J Neurosci 1992:12:4745–4765

    PubMed  CAS  Google Scholar 

  27. Celebrini S, Newsome WT. Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J Neurosci 1994; 14:4109–4124.

    PubMed  CAS  Google Scholar 

  28. Shadlen MN, Newsome WT. Motion Perception—Seeing and deciding. Proc Natl Acad Sci USA 1996; 93:628–633.

    Article  PubMed  CAS  Google Scholar 

  29. Salzman CD, Newsome WT. Neural mechanisms for forming a perceptual decision. Science 1994; 264:231–237.

    Article  PubMed  CAS  Google Scholar 

  30. Celebrini S, Newsome WT. Microstimulation of extrastriate area MST influences performance on a direction discrimination task. J Neurophysiol 1995; 73:437–448.

    PubMed  CAS  Google Scholar 

  31. Wood CC, McCarthy G. Principal component analysis of event-related potentials: Simulation studies demonstrate misallocation of variance across components. Electroenceph Clin Neurophysiol 1984; 59:249–260.

    Article  PubMed  CAS  Google Scholar 

  32. Softky WR. Sub-millisecond coincidence detection in active dendrite trees. Neuroscience 1994; 58:13–41.

    Article  PubMed  CAS  Google Scholar 

  33. Softky WR, Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 1993; 13:334–350.

    PubMed  CAS  Google Scholar 

  34. Rolls ET, Treves A, Tovée MJ. The representational capacity of the distributed encoding of information provided by populations of neurons in the primate temporal visual cortex. Exp Brain Res 1997; 114:149–162.

    Article  PubMed  CAS  Google Scholar 

  35. Shadlen MN, Newsome WT. Is there a signal in the noise? Curr Op Neurobiol 1995; 5:248–250.

    Article  PubMed  CAS  Google Scholar 

  36. Gerstein G, Mandelbrot B. Random walk models for the spike activity of a single neuron. Biophys J 1964; 4:41–68.

    Article  PubMed  CAS  Google Scholar 

  37. Calvin W, Stevens C. Synaptic noise and other sources of randomness in motoneuron interspike intervals. J Neurophysiol 1968; 31:574–587.

    PubMed  CAS  Google Scholar 

  38. Fotheringhame DK, Young MP. Neural coding schemes for sensory representation: Theoretical proposals and empirical evidence. In: Rugg M, ed. Cognitive Neuroscience. Psychology Press 1997; 47–76.

    Google Scholar 

  39. Kim H, Connors B. Apical dendrites of the neocortex: Correlation between sodium and calcium dependent spiking and pyramidal cell morphology. J Neurosci 1993; 13:5301–5311.

    PubMed  CAS  Google Scholar 

  40. Amitai Y, Friedman A, Connors B, Gutnick M. Regenerative activity in apical dendrites of pyramidal cells in the neocortex. Cereb Cortex 1993; 3:26–38.

    Article  PubMed  CAS  Google Scholar 

  41. Stuart G, Sakman B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 1994; 367:69–72.

    Article  PubMed  CAS  Google Scholar 

  42. Bernander O, Douglas RJ, Martin KAC, Koch C. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad SCi USA 1991; 88:11569–11573.

    Article  PubMed  CAS  Google Scholar 

  43. Nowak LG, Sanchez-Vives MV, McCormick DA. Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cereb Cortex 1997; 7:487–501.

    Article  PubMed  CAS  Google Scholar 

  44. Preyer S, Hemmert W, Pfister M, Zenner HP, Gummer AW. Frequency response of mature guinea-pig outer hair cells to stereociliary displacement. Hearing Res 1994; 77:116–124.

    Article  CAS  Google Scholar 

  45. Rapp M, Segev I, Yarom Y. Physiology morphology and passive models of guinea-pig cerebellar Purkinje cells. J Physiol (Lond) 1994; 474:101–118.

    CAS  Google Scholar 

  46. Mason A, Larkman A. Correlations between morphology and elec-trophysiology of pyramidal neurons in slices of rat visual cortex II. Electrophysiology. J Neurosci 1990; 10:1415–1428.

    PubMed  CAS  Google Scholar 

  47. Spruston N, Johnston D. Perforated patch clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J Neurophysiol 1992; 67:508–529.

    PubMed  CAS  Google Scholar 

  48. Connors B, Gutnick M, Prince D. Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 1982; 48:1302–1320.

    PubMed  CAS  Google Scholar 

  49. Mason A, Nicoll A, Stratford K. Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J Neurosci 1991; 11:72–84.

    PubMed  CAS  Google Scholar 

  50. Stevens CF. Cooperativity of unreliable neurons. Current Biology 1994; 4:268–269.

    Article  PubMed  CAS  Google Scholar 

  51. Peters A. Number of neurons and synapses in primary visual cortex. In: Jones A, Peters A eds. Cerebral Cortex, Further Aspects of Cortical Function Including Hippocampus. New York: Plenum 1987; 267–294.

    Google Scholar 

  52. Beaulieu C, Kisvardy Z, Somogyi P, Cynader M, Cowey A. Quantitative distribution of GABA-immunopositive and immunonegative neurons and synapses in the monkey striate cortex (Vi). Cereb Cortex 1992; 2:295–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tovée, M.J. (1998). Information Measures. In: The Speed of Thought. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10408-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10408-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10410-1

  • Online ISBN: 978-3-662-10408-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics