Skip to main content

Gas Flow and Heat Transfer in Granular Materials

  • Chapter
The Reduction of Iron Ores

Abstract

There are numerous possible technological processes for carrying out the reduction of ores by gases containing CO or H2. All conceivable processes are characterized by the common endeavour to achieve in the smallest possible volume the most rapid and complete chemical conversion and heat transfer possible. A uniform circulation of the reducing gases round the ore pieces offers the best conditions. The following sections deal with gas flow in ore charges, with the region of stability for various types of gas flow, and with heat transfer. According to Wicke and Brötz 305), in general, the possible states of a granular material through which a fluid is flowing are those shown in Table 9; from left to right in this table, the states shown correspond to increasing fluid velocity or decreasing grain size. Those of particular importance in the reduction of ores are:

  1. a)

    the static bed, or packed column;

  2. b)

    the fluidized bed;

  3. c)

    particulate fluidization (or fluidized dust).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Wicke, E., and W. Brötz: Chem.-Ing.-Technik 24 (1952) p. 58.

    Article  Google Scholar 

  2. Furnas, C. C.: Fluid Flow through Beds of Broken Solids. Bull. Bur. Mines, No. 307, 1929.

    Google Scholar 

  3. Carman, P. C.: Trans. Inst. Chem. Eng. 15 (1937) p. 150.

    Google Scholar 

  4. Kozeny, J.: Ber. Akad. Wien 136a (1927) p. 271.

    Google Scholar 

  5. Jeschar, R.: Arch. Eisenhüttenwes. 35 (1964) p. 91–108. (Hochofenaussch. 391 and Wärmestelle 539.)

    Google Scholar 

  6. Brauer, H.: Dechema Monogr. 37 (1960) p. 7–77.

    Google Scholar 

  7. Doering, E.: Allg. Wärmetechn. 6 (1955) p. 82–89.

    Google Scholar 

  8. Ergun, S.: Chem. Engng. Progr. 48 (1952) p. 89–94.

    Google Scholar 

  9. Taschenbuchfür Chemiker und Physiker. Edited by J. D’ans and E. Lax. Berlin 1943, p. 1108.

    Google Scholar 

  10. Leva, M.: Fluidization. New York 1959, p. 42.

    Google Scholar 

  11. Ergun, S.: Chem. Engng. Progr. 48 (1952) p. 89–94.

    Google Scholar 

  12. Hansen, M.: Arch. Eisenhüttenwes. 34 (1963) p. 151–157. (Hochofenaussch. 374 and Wärmestelle 522.)

    Google Scholar 

  13. a. As in No. 314, p. 169.

    Google Scholar 

  14. Perry, J. H.: Chemical Engineers’ Handbook. 4th ed. New York 1963, p. 20–41.

    Google Scholar 

  15. Mathur, K. B., and P. E. Gishler: A. I. Ch. E. J. 1 (1955) p. 157.

    Article  Google Scholar 

  16. Verfahrenstechnische Berichte. Publ. by Ing.-Wiss. Abt. der Farbenfabriken Bayer AG, Leverkusen. Weinheim/Bergstr. 1963, p. 561.

    Google Scholar 

  17. Poltrier, K.: Arch. Eisenhüttenwes. 37 (1966) p. 365–374.

    Google Scholar 

  18. Jeschar, R.: Arch. Eisenhüttenwes. 37 (1966) p. 193–200. (Aussch. metallurg. Grundlagen 19 and Wärmestelle 572.)

    Google Scholar 

  19. Wartmann, R., and H. Mertes: Arch. Eisenhüttenwes. 37 (1966) p. 201–207. (Wärmestelle 573 and Aussch. metallurg. Grundlagen 20.)

    Google Scholar 

  20. Jeschar, R., R. Wartmann, and H. Mertes: Arch. Eisenhüttenwes., forthcoming.

    Google Scholar 

  21. Mertes, H.: Dr. Diss., TH Clausthal 1968.

    Google Scholar 

  22. Wicke, E.: Chem.-Ing.-Technik 24 (1952) p. 82–91.

    Article  Google Scholar 

  23. Wrcxr, E., and F. Fetting: Chem.-Ing.-Technik 26 (1954) p. 301–309.

    Article  Google Scholar 

  24. Brötz, W.: Chem.-Ing.-Technik 24 (1952) p. 60–81.

    Article  Google Scholar 

  25. German Patent DRP 463–772 of 3 Oct. 1922.

    Google Scholar 

  26. Perry, J. H.: Chemical Engineers’ Handbook. 4th ed. New York 1963.

    Google Scholar 

  27. Leva, M.: Fluidization. New York 1959.

    Google Scholar 

  28. Schytil, F.: Dechema Monogr. 38 (1960) p. 231–248.

    Google Scholar 

  29. Grassmann, P.: Physikalische Grundlagen der Chemie-Ingenieur-Technik. Aarau/Frankfurt a. M. 1961.

    Google Scholar 

  30. Fortschritte der Verfahrenstechnik. Weinheim/Bergstr. 1954.

    Google Scholar 

  31. v. Bogdandy, L.: Stahl u. Eisen 79 (1959) p. 1064.

    Google Scholar 

  32. Meissner, H. P., and F. C. Schora: Trans. Metallarg. Soc. AIME 218 (1960) p. 12–21.

    Google Scholar 

  33. Deemter, J. J. van: The counter-current flow model of a gas-solids fluidized bed. A lecture given at the International Symposium on Fluidization, 5–9 June 1967 in Eindhoven.

    Google Scholar 

  34. Block, F. R.: Counterflow heat exchange in fluidized beds. As in No. 328a.

    Google Scholar 

  35. Lago, E. C., A. R. Otero, and J. J. S. Hof: Development of a countercurrent multistage fluidized bed reactor for solid-gas systems. As in No. 328a.

    Google Scholar 

  36. Trawinski, H.: Chem.-Ing.-Technik 23 (1951) p. 416–419.

    Article  Google Scholar 

  37. Fetting, F., and E. Wicke: Dechema Monogr. 24 (1955) p. 146–169.

    Google Scholar 

  38. Nonnenmacher, H.: Z. Elektrochem., Ber. Bunsenges. phys. Chem. 57 (1953) p. 512–518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Bogdandy, L., Engell, HJ. (1971). Gas Flow and Heat Transfer in Granular Materials. In: The Reduction of Iron Ores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10400-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10400-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10402-6

  • Online ISBN: 978-3-662-10400-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics