Gas Flow and Heat Transfer in Granular Materials

  • Ludwig von Bogdandy
  • Hans-Jürgen Engell


There are numerous possible technological processes for carrying out the reduction of ores by gases containing CO or H2. All conceivable processes are characterized by the common endeavour to achieve in the smallest possible volume the most rapid and complete chemical conversion and heat transfer possible. A uniform circulation of the reducing gases round the ore pieces offers the best conditions. The following sections deal with gas flow in ore charges, with the region of stability for various types of gas flow, and with heat transfer. According to Wicke and Brötz 305), in general, the possible states of a granular material through which a fluid is flowing are those shown in Table 9; from left to right in this table, the states shown correspond to increasing fluid velocity or decreasing grain size. Those of particular importance in the reduction of ores are:
  1. a)

    the static bed, or packed column;

  2. b)

    the fluidized bed;

  3. c)

    particulate fluidization (or fluidized dust).



Heat Transfer Pressure Drop Blast Furnace Granular Material Critical Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 305.
    Wicke, E., and W. Brötz: Chem.-Ing.-Technik 24 (1952) p. 58.CrossRefGoogle Scholar
  2. 306.
    Furnas, C. C.: Fluid Flow through Beds of Broken Solids. Bull. Bur. Mines, No. 307, 1929.Google Scholar
  3. 307.
    Carman, P. C.: Trans. Inst. Chem. Eng. 15 (1937) p. 150.Google Scholar
  4. 308.
    Kozeny, J.: Ber. Akad. Wien 136a (1927) p. 271.Google Scholar
  5. 309.
    Jeschar, R.: Arch. Eisenhüttenwes. 35 (1964) p. 91–108. (Hochofenaussch. 391 and Wärmestelle 539.)Google Scholar
  6. 310.
    Brauer, H.: Dechema Monogr. 37 (1960) p. 7–77.Google Scholar
  7. 311.
    Doering, E.: Allg. Wärmetechn. 6 (1955) p. 82–89.Google Scholar
  8. 312.
    Ergun, S.: Chem. Engng. Progr. 48 (1952) p. 89–94.Google Scholar
  9. 313.
    Taschenbuchfür Chemiker und Physiker. Edited by J. D’ans and E. Lax. Berlin 1943, p. 1108.Google Scholar
  10. 314.
    Leva, M.: Fluidization. New York 1959, p. 42.Google Scholar
  11. 314.
    Ergun, S.: Chem. Engng. Progr. 48 (1952) p. 89–94.Google Scholar
  12. 135.
    Hansen, M.: Arch. Eisenhüttenwes. 34 (1963) p. 151–157. (Hochofenaussch. 374 and Wärmestelle 522.)Google Scholar
  13. a. As in No. 314, p. 169.Google Scholar
  14. 316.
    Perry, J. H.: Chemical Engineers’ Handbook. 4th ed. New York 1963, p. 20–41.Google Scholar
  15. 316a.
    Mathur, K. B., and P. E. Gishler: A. I. Ch. E. J. 1 (1955) p. 157.CrossRefGoogle Scholar
  16. 317.
    Verfahrenstechnische Berichte. Publ. by Ing.-Wiss. Abt. der Farbenfabriken Bayer AG, Leverkusen. Weinheim/Bergstr. 1963, p. 561.Google Scholar
  17. 318.
    Poltrier, K.: Arch. Eisenhüttenwes. 37 (1966) p. 365–374.Google Scholar
  18. Jeschar, R.: Arch. Eisenhüttenwes. 37 (1966) p. 193–200. (Aussch. metallurg. Grundlagen 19 and Wärmestelle 572.)Google Scholar
  19. Wartmann, R., and H. Mertes: Arch. Eisenhüttenwes. 37 (1966) p. 201–207. (Wärmestelle 573 and Aussch. metallurg. Grundlagen 20.)Google Scholar
  20. Jeschar, R., R. Wartmann, and H. Mertes: Arch. Eisenhüttenwes., forthcoming.Google Scholar
  21. 318d.
    Mertes, H.: Dr. Diss., TH Clausthal 1968.Google Scholar
  22. 319.
    Wicke, E.: Chem.-Ing.-Technik 24 (1952) p. 82–91.CrossRefGoogle Scholar
  23. Wrcxr, E., and F. Fetting: Chem.-Ing.-Technik 26 (1954) p. 301–309.CrossRefGoogle Scholar
  24. 320.
    Brötz, W.: Chem.-Ing.-Technik 24 (1952) p. 60–81.CrossRefGoogle Scholar
  25. 321.
    German Patent DRP 463–772 of 3 Oct. 1922.Google Scholar
  26. 322.
    Perry, J. H.: Chemical Engineers’ Handbook. 4th ed. New York 1963.Google Scholar
  27. 323.
    Leva, M.: Fluidization. New York 1959.Google Scholar
  28. 324.
    Schytil, F.: Dechema Monogr. 38 (1960) p. 231–248.Google Scholar
  29. 325.
    Grassmann, P.: Physikalische Grundlagen der Chemie-Ingenieur-Technik. Aarau/Frankfurt a. M. 1961.Google Scholar
  30. 326.
    Fortschritte der Verfahrenstechnik. Weinheim/Bergstr. 1954.Google Scholar
  31. 327.
    v. Bogdandy, L.: Stahl u. Eisen 79 (1959) p. 1064.Google Scholar
  32. 328.
    Meissner, H. P., and F. C. Schora: Trans. Metallarg. Soc. AIME 218 (1960) p. 12–21.Google Scholar
  33. 328a.
    Deemter, J. J. van: The counter-current flow model of a gas-solids fluidized bed. A lecture given at the International Symposium on Fluidization, 5–9 June 1967 in Eindhoven.Google Scholar
  34. Block, F. R.: Counterflow heat exchange in fluidized beds. As in No. 328a.Google Scholar
  35. Lago, E. C., A. R. Otero, and J. J. S. Hof: Development of a countercurrent multistage fluidized bed reactor for solid-gas systems. As in No. 328a.Google Scholar
  36. 329.
    Trawinski, H.: Chem.-Ing.-Technik 23 (1951) p. 416–419.CrossRefGoogle Scholar
  37. 330.
    Fetting, F., and E. Wicke: Dechema Monogr. 24 (1955) p. 146–169.Google Scholar
  38. 331.
    Nonnenmacher, H.: Z. Elektrochem., Ber. Bunsenges. phys. Chem. 57 (1953) p. 512–518.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1971

Authors and Affiliations

  • Ludwig von Bogdandy
    • 1
  • Hans-Jürgen Engell
    • 2
  1. 1.Hüttenwerk Oberhausen AGOberhausenGermany
  2. 2.Max-Planck-Institut für EisenforschungDüsseldorfGermany

Personalised recommendations