The Non-Linear Field Theories of Mechanics

  • C. Truesdell
  • W. Noll
Chapter

Abstract

Matter is commonly found in the form of materials Analytical mechanics turned its back upon this fact, creating the centrally useful but abstract concepts of the mass point and the rigid body, in which matter manifests itself only through its inertia, independent of its constitution; “modern” physics likewise turns its back, since it concerns solely the small particles of matter, declining to face the problem of how a specimen made up of such particles will behave in the typical circumstances in which we meet it. Materials, however, continue to furnish the masses of matter we see and use from day to day: air, water, earth, flesh, wood, stone, steel, concrete, glass, rubber,... All are deformable. A theory aiming to describe their mechanical behavior must take heed of their deformability and represent the definite principles it obeys.

Keywords

Vortex Diesel Cavitation Dition Triad 

General references

  1. 1678 [1]
    Hooke, R.: Lectures de Potentia Restitutiva, or of Spring Explaining the Power of Springing Bodies. London = R. T. Gunther: Early Science in Oxford 8, 331–356 (1931). (19A)Google Scholar
  2. 1769 [1]
    Euler, L.: De aequilibrio et motu corporum flexuris elasticis iunctorum. Novi comm. acad. sci. Petrop. 13 (1768), 259–04 = Opera omnia II 11, 3–16. (66)Google Scholar
  3. 1780 [1]
    Coulomb, C. A.: Recherches sur la meilleure manière de fabriquer les aiguilles aimantées¡ Mém. math. phys. divers savans 9, 165–264. (66) 1980Google Scholar
  4. 1787 [1]
    Coulomb, C. A.: Recherches théoriques et expérimentales sur la force de torsion, et sur l’élasticité de fils de métal: Application de cette théorie ¨¤ l’emploi des métaux dans les arts et dans différentes expériences de physique: Construction de différentes balances de torsion, pour mesurer les plus petits degrés de force. Observations sur les loix de l’élasticité et de la cohérence. Mém. acad. sci. Paris 1784, 229–272. (66)Google Scholar
  5. 1807 [1]
    Young, T.: Mathematical Elements of Natural Philosophy. A Course of Lectures on Natural Philosophy and the Mechanical Arts 2, 1–86. London. (66)Google Scholar
  6. 1823 [1]
    Cauchy, A.-L.: Recherches sur l’équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques. Bull. Soc. Philomath. Paris 9–13 = Oeuvres (2) 2, 300–304. 1823Google Scholar
  7. 1828 [1]
    Cauchy, A.-L.: Sur les équations qui expriment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou non élastique. Ex. de Math. 3, 160–187 = Oeuvres (2) 8, 195–226. (26, 43) 1828Google Scholar
  8. 1828 [2]
    Cauchy, A.-L.: Sur l’équilibre et le movement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle. Ex. dc Math. 3, 188–212 = Oeuvres (2) 8, 227–252. (250) 1828Google Scholar
  9. 1829 [1]
    Cauchy, A.-L.: Sur l’équilibre et le mouvement intérieur des corps considérés comme des masses continues. Ex. de Math. 4, 293–319 = Oeuvres 9, 342–369. (19A, 68, 99) 1828Google Scholar
  10. 1829 [1]
    PoissoN, S.-D.: Mémoire sur les équations générales de l’équilibre et du mouvement des corps élastiques et des fluides (1829). J. École Poly. 13, Cahier 20, 1–174. (19 A) 1831Google Scholar
  11. 1836 [1]
    Piola, G.: Nuova analisi per tutte le questioni della rneccanica molecolare. Mem. Mat. Fis. Soc. Ital. Modena 21 (1835), 155–231. (94) 1836Google Scholar
  12. 1839 [1]
    Green, G.: On the laws of reflection and refraction of light at the common surface of two non-crystallised media (1837). Trans. Cambridge Phil. Soc. 7 (1838–1842) 1–24 = Papers, 245–269. (82A, 88) 1839Google Scholar
  13. 1841 [1]
    Green, G.: On the propagation of light in crystallised media (1S39). Trans. Cambridge Phil. Soc. 7 (1838–1842), 121–140 = Papers, 293–311. (82A, 84) 1841Google Scholar
  14. 1843 [1]
    Sr. Venant, A.-J.-C. B. De: Note ¨¤ joindre au mémoire sur la dynamique des fluides, présenté le 14 avril 1834. C. R. Acad. Sci. Paris 17, 1240–1243. (34, 119) 1843Google Scholar
  15. 1844 [1]
    St. Venant, A.-J.-C. B. De: Sur les pressions qui se développent ¨¤ l’intérieur des corps solides lorsque les déplacements de leurs points, sans altérer l’élasticité, Ne peuvent cependant pas ¨ºtre considérés comme très petits. Bull. Soc. Philo-math. 5, 26–28. (94) 1844Google Scholar
  16. 1845 [1]
    Stokes, G. G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Cambridge Phil. Soc. 8 (1844–1849), 287–319 = Papers 1, 75–129. (26, 119) 1845Google Scholar
  17. 1847 [1]
    St. Venant, A.-J.-C. B. De: Mémoire sur l’équilibre des corps solides, dans les limites de leur élasticité, et sur les conditions de leur résistance, quand les déplacements éprouvés par leurs points ne sont pas très-petits. C. R. Acad. Sci. Paris 24, 260–263. (94) 1847Google Scholar
  18. 1849 [1]
    Haughton, S.: On the equilibrium and motion of solid and fluid bodies (1846). Trans. Roy. Irish Acad. 21, 151–198. (88)Google Scholar
  19. 1850 [1]
    Cauchy, A.-L.: Mémoire sur les systèmes isotropes de points matériels. Mém. Acad. Sci. Paris 22, 615–654 = Oeuvres (1) 2, 351–386. (11) 1850Google Scholar
  20. 1850 [2]
    Kirchhoff, G.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. reine angew. Math. 40, 51–88 = Ges. Abh. 237–279. (82 A, 88) 1850Google Scholar
  21. 1851 [1]
    Cauchy, A.-L.: Note sur l’équilibre et les mouvements vibratoires des corps solides. C. R. Acad. Sci. Paris 32, 323–326 = Oeuvres (1) 11, 341–346. (28, 98) 1851Google Scholar
  22. 1851 [2]
    Da Silva, D. A.: Memoria sobre a rotaçäo das forças em torno dos pontos dapplicaçâc. Mem. Ac. Sc. Lisboa (2a) 31, 61–231. (44) 1851Google Scholar
  23. 1852 [1]
    Kirchhoff, G.: Über die Gleichungen des Gleichgewichts eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzgsber. Akad. Wiss. Wien 9, 762–773. (Not repr. in Abh.) (82, 82A, 94) 1852Google Scholar
  24. 1853 [1]
    Maxwell, J. C.: On the equilibrium of elastic solids (1850): Trans. Roy. Soc. Edinb. 20 (1848/1853), 87–120 = Papers 1, 30–73. (66) 1853Google Scholar
  25. 1855 [1]
    St. Venant, A.-J.-C. B. DE: Mémoire sur la torsion des prismes¡ (1853) Mém. Divers Savants Acad. Sci. Paris 14, 233–560. (66) 1855Google Scholar
  26. 1855 [2]
    Thomson, W. (Lord Kelvin): On the thermo-elastic and thermo-magnetic properties of matter. Quart. J. Math. 1 (1855–1857), 55–77 = (with notes and additions) Phil. Mag. (5) 5 (1878), 4–27 = Pt. VII of On the dynamical theory of heat. Papers 1, 291–316. (82A, 83) 1855Google Scholar
  27. 1856 [1]
    Thomson, W. (Lord Kelvin): Elements of a mathematical theory of elasticity. Phil. Trans. Roy. Soc. Lond. 146, 481–498. (82A) 1856Google Scholar
  28. 1860 [1]
    Neumann, C.: Zur Theorie der Elasticität. J. reine angew. Math. 57, 281–318. (82, 82 A) 1860Google Scholar
  29. 1863 [1]
    ST. Venant, A.-J.-C. B. DE: Mémoire sur la distribution des élasticités autour de chaque point d’un solide ou d’un milieu de contexture quelconque, particulièrement lorsqu’il est amorphe sans ¨ºtre isotrope. J. Math. Pures Appl. (2) 8, 257295, 353–430. (84, 94) 1863Google Scholar
  30. 1863 [2]
    Thomson, W. (Lord Kelvin): Dynamical problems regarding elastic spheroidal shells and spheroids of incompressible liquid. Phil. Trans. Roy. Soc. Lond. A 153, 583–616 = Papers 3, 351–394. (82A, 83, 84, 85)Google Scholar
  31. 1866 [1]
    Kleitz, C.: Sur les forces moléculaires dans les liquides en mouvement avec application ¨¤ l’hydrodynamique. C. R. Acad. Sci. Paris 63, 988–991. (Partial abstract of [1873, 1]). (119)Google Scholar
  32. 1867 [1]
    Maxwell, J. C.: On the dynamical of theory gases (1866). Phil. Trans. Roy. Soc. Lond. A 157, 49–88 = Phil. Mag. (4) 35 (1868), 129–145, 185–217 = Papers 2, 26–78. (3,5)Google Scholar
  33. 1867 [2]
    Thomson, W. (Lord Kelvin), and P. G. Tait: Treatise on Natural Philosophy, Part I. Cambridge. [The second edition, which appeared in 1879, has been reprinted by Dover Publications, N.Y., under the redundant as well as gratuitous title, “Principles of Mechanics and Dynamics.] (54, 82A).Google Scholar
  34. 1868 [1]
    Boussinesq, J.: Sur l’influence des frottements dans les mouvements reguliers des fluides. J. Math. Pures Appl. (2) 13, 377–438. (119, 120, 125) 1868Google Scholar
  35. 1868 [2]
    Sr. Venant, A.-J.-C. B. DE: Formules de l’élasticité des corps amorphes que des compressions permanentes et inégales ont rendus hétérotropes. J. Math. Pures Appl. (2) 13, 242–254. (68)Google Scholar
  36. 1869 [1]
    St. Venant, A.-J.-C. B. DE: Note sur les valeurs que prennent les pressions dans un solide élastique isotrope lorsque l’on tient compte des dérivées d’ordre supérieur des déplacements très-petits que leurs points ont éprouvés. C. R. Acad. Sci. Paris 68, 569–571. (28, 98) 1869Google Scholar
  37. 1868 [2]
    St. Venant, A.-J.-C. B. DE: Rapport sur un mémoire de M. MAURICE LEVY, relatif ¨¤ l’hydrodynamique des liquides homogènes, particulièrement ¨¤ leur écoulement rectiligne et permanent. C. R. Acad. Sci. Paris 68, 582–592. (28, 119) 1868Google Scholar
  38. 1870 [1]
    Boussinesq, J.: Note complémentaire au mémoire sur les ondes liquides periodiques, presenté le 29 novembre 1869, et approuvé par lAcadémie le 21 fevrier 1870. Établissement de relations générales et nouvelles entre l énergie interne d’un corps fluide ou solide, et ses pressions ou forces élastiques. C. R. Acad. Sci. Paris 71, 400–402. (84, 94) 1870Google Scholar
  39. 1871 [1]
    St. Venant, A.-J.-C. B. de: Formules des augmentations que de petites déformations d’un solide apportent aux pressions ou forces élastiques, supposées considérables, qui déj¨¤ étaient en jeu dans son intérieur. J. Math. Pures Appl. (2) 16, 275–307. (94) 1871Google Scholar
  40. 1872 [1]
    Boussinesq, J.: Théorie des ondes liquides periodiques (1869). Mém. Divers Savants 20, 509–615. Abstracts in C. R. Acad. Sci. Paris 68, 905–906 (1869); 70, 360–367 (1870), supplemented by [1870, 1]. (82, 84) 1872Google Scholar
  41. 1872 [2]
    St. Venant, A.-J.-C. B. DE: Rapport sur un mémoire de M. KLEITZ intitulé: Etudes sur les forces moléculaires dans les liquides en mouvement, et application ¨¤ l’hydrodynamique. C. R. Acad. Sci. Paris 74, 426–438. (119) 1872Google Scholar
  42. 1872 [3]
    Sr. Venant, A.-J.-C. B. DE: Sur l’hydrodynamique des cours d’eau. C. R. Acad. Sci. Paris 74, 570–577, 649–657, 693–701, 770–774. (119) 1872Google Scholar
  43. 1873 [1]
    Kleltz, C.: Etudes sur les forces moléculaires dans les liquides en mouvement et application ¨¤ lhydrodynamique. Paris: Dunod. (119)Google Scholar
  44. 1874 [1]
    Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Sitzgsber. Akad. Wiss. Wien 702, 275–306 = Ann. Physik, Ergänz. 7, 624–654 (1876) = Wiss. Abh. 1, 616–639. (35, 41) 1874Google Scholar
  45. 1874 [2]
    Meyer, O.-E.: Zur Theorie der inneren Reibung. J. reine angew. Math. 78, 130–135. (35, 41, 119) 1874Google Scholar
  46. 1874 [3]
    Meyer, O.-E.: Theorie der elastischen Nachwirkung. Ann. Physik 151 = (6) 1, 108–119. (35, 41, 120) 1874Google Scholar
  47. 1875 [1]
    Gibbs, J. W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. 3 (1875–1878), 108–248, 343–524 = Works 1, 55–353. (82, 82A, 89) 1874Google Scholar
  48. 1874 [2]
    Meyer, O. E.: Zusatz zu der Abhandlung zur Theorie der inneren Reibung. J. reine angew. Math. 80, 315–316. (35, 41) 1874Google Scholar
  49. 1876 [1]
    Butcher, J. G.: On viscous fluids in motion. Proc. Loud. Math. Soc. 8 (1876/77), 103–135. (35) 1876Google Scholar
  50. 1876 [2]
    Maxwell, J. C.: On stresses in rarified gases arising from inequalities of temperature. Phil. Trans. Roy Soc. Lond. 170, 231–56= Papers 2, 680–712. (124) 1876Google Scholar
  51. 1883 [1]
    Mach, E.: Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt. Leipzig: Brockhaus. [There are many later editions and translations.] (18) 1883Google Scholar
  52. 1885 [1]
    Reynolds, O.: On the dilatancy of media composed of rigid particles in contact. With experimental illustrations. Phil. Mag. (2) 20, 469–481 = Papers 2, 203–216. (119) 1885Google Scholar
  53. 1886 [1]
    Todhunter, I., and K. Pearson: A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, 1 [This is mainly the work of PEARSON, as indicated in the enumeration of sections. Cambridge: Cambridge Univ. Press. Reprinted, Dover Publications, New York, 1960. (50) 1886Google Scholar
  54. 1887 [7]
    Reynolds, O.: Experiments showing dilatancy, a property of granular material, possibly connected with gravitation. Proc. Roy. Inst. Gt. Britain 11, 354–363 = Papers 2, 217–227. (119) 1887Google Scholar
  55. 1887 [2]
    Voigt, W.: Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh. Ges. Wiss. Göttingen 34, 100 pp. (98)Google Scholar
  56. 1888 [1]
    Bards, C. Maxwells theory of the viscosity of solids and its physical verification. Phil. Mag. (5) 26, 183–217. (2) 1888Google Scholar
  57. 1888 [2]
    Basset, A. B.: A Treatise on Hydrodynamics. 2 vols. Cambridge: Cambridge Univ. Press. (120) 1888Google Scholar
  58. 1888 [3]
    Thomson, W. (Lord Kelvin): On the reflection and refraction of light. Phil. Mag. (5) 26, 414–425. Reprinted in part as ¡ì¡ì 107–111 of Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light. London: Clay and Sons 1904. (51) 1888Google Scholar
  59. 1889 [1]
    Pearson, K.: On the generalized equations of elasticity, and their application to the wave theory of light. Proc. Lond. Math. Soc. 20, 297–350. (35) 1889Google Scholar
  60. 1889 [2]
    Poincaré, H.: Leçons sur la Théorie Mathématique de la Lumière. Paris. (30, 82A) 1889Google Scholar
  61. 1889 [3]
    Voigt, W.: Über adiabatische Elasticitätsconstanten. Ann. Physik 36, 743–759. (82A) 1889Google Scholar
  62. 1889 [4]
    Voigt, W.: Über die innere Reibung der festen Körper, insbesondere der Krystalle. Göttinger Abh. 36, No. 1. (35) 1889Google Scholar
  63. 1892 [1]
    Scxoenfliess, A.: Kristallsysteme und Kristallstruktur. Leipzig. (33) 1892Google Scholar
  64. 1891 [1]
    Poincaré, H.: Leçons sur la Théorie de l’Elasticité. Paris. (30, 68, 82A) 1891Google Scholar
  65. 1891[2]
    Voigt, W.: Über innere Reibung fester Körper, insbesondere der Metalle. Ann. Physik (2) 47, 671–693. (35) 1891Google Scholar
  66. 1891 [3]
    Voigt, W.: Bestimmung der Constanten der Elasticität und Untersuchung der inneren Reibung für einige Metalle. Göttinger Abh. 38, No. 2. (35) 1891Google Scholar
  67. 1893 [1]
    Barus, C.: Note on the dependence of viscosity on pressure and temperature. Proc. Amer. Acad. Arts Sci. (2) 19 = 27, 13–18. (114) 1893Google Scholar
  68. 1893 [2]
    Barus, C.: Isothermals, isopiestics, and isometrics relative to viscosity. Amer. J. Sci. (3) 45 = 145, 87–96. (114) 1893Google Scholar
  69. 1893 [3]
    Cellerier, G.: Sur les principes généraux de la thermodynamique et leur application aux corps élastiques. Bull. Soc. Math. France 21, 26–43. (43) 1893Google Scholar
  70. 1893 [4]
    Todhunter, I., and K. Pearson: A History of the Theory of Elasticity and of the Strength of Materials from Galilei to Lord Kelvin, 2 [almost entirely the work of PEARSON] Cambridge: Cambridge Univ. Press. Reprinted Dover Publications, New York, 1960. (66)Google Scholar
  71. 1893 [5]
    Voigt, W.: Über eine anscheinend nothwendige Erweiterung der Theorie der Elasticität. Göttinger Nachr. 534–552 = Ann. Physik (2) 52, 536–555. (66) 1893Google Scholar
  72. 1894 [1]
    Finger, J.: Das Potential der inneren Kräfte und die Beziehungen zwischen den Deformationen und den Spannungen in elastisch isotropen Körpern bei Berücksichtigung von Gliedern, die bezüglich der Deformationselemente von dritter, beziehungsweise zweiter Ordnung sind. Sitzgsber. Akad. Wiss. Wien (II a) 103, 163–200, 231–250. (66, 86) 1894Google Scholar
  73. 1894 [2]
    Finger, J.: Über das Kriterion der Coaxialität zweier Mittelpunktsflächen zweiter Ordnung. Sitzgsber. Akad. Wiss. Wien (II a) 103, 1061–1065. (48) 1894Google Scholar
  74. 1894 [3]
    Finger, J.: Über die allgemeinsten Beziehungen zwischen Deformationen und den zugehörigen Spannungen in aeolotropen und isotropen Substanzen. Sitzgsber. Akad. Wiss. Wien (II a) 103, 1073–1100. (12, 48, 85, 86)Google Scholar
  75. 1895 [1]
    Voigt, W.: Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen. Abh. Ges. Wiss. Göttingen 1894, 72–79. (98)Google Scholar
  76. 1896 [1]
    Cosserat, E., and F.: Surlathéorie de l’élasticité. Ann. Toulouse 10, 1–116. (4, 42, 43, 83, 84, 85) 1896Google Scholar
  77. 1900 [1]
    Brillouin, M.: Théorie moléculaire des gaz. Diffusion du mouvement et de l’énergie. Ann. Chim. (7) 20, 440–485. (125) 1900Google Scholar
  78. 1901 [1]
    Duhem, P.: Sur les théorèmes Dhugoniot, les lemmes de M. Hadamard et la propagation des ondes dans les fluides visqueux. C. R. Acad. Sci. Paris 132, 117–120. (96t) 1901Google Scholar
  79. 1901 [2]
    Duiiem, P.: Des ondes qui peuvent persister en un fluide visqueux. C. R. Acad. Sci. Paris 133, 579–580. (96t) 1901Google Scholar
  80. 1901 [3]
    Hadamard, J.: Sur la propagation des ondes. Bull. Soc. Math. France 29, 50–60. (71, 74, 90) 1901Google Scholar
  81. 1901 [4]
    Korteweg, D. J.: Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Arch. Néerl. Sci. Ex. Nat. (2) 6, 1–24. (124) 1901Google Scholar
  82. 1901 [5]
    Natanson, L.: On the laws of viscosity. Phil. Mag. (6) 2, 342–356. (19 A, 35) 1901Google Scholar
  83. 1901 [6]
    Natanson, L.: Sur les lois de la viscosité. Bull. Int. Acad. Sci. Cracovie 95–111. (19A, 35) 1901Google Scholar
  84. 1901 [7]
    Natanson, L.: Sur la double refraction accidentelle dans les liquides. Bull. Int. Acad. Sci. Cracovie 161–171. (19 A, 35) 1901Google Scholar
  85. 1901 [8]
    Natanson, L.: Über die Gesetze der inneren Reibung. Z. physik. Chem. 38, 690–704. (19 A, 35) 1901Google Scholar
  86. 1901 [9]
    Reynolds, O.: On the equations of motion and the boundary conditions for viscous fluids (1883). Papers 2, 132–137. (35)Google Scholar
  87. 1902 [1]
    Duhem, P.: Recherches sur l’hydrodynamique. Seconde Partie. Ann. Toulouse (2) 4, 101–169. Also included in reprint, Paris: Gauthier Villars 1903. (96 t)Google Scholar
  88. 1902 [2]
    Natanson, L.: Sur la propagation d’un petit mouvement dans un fluide visqueux. Bull. Int. Acad. Sci. Cracovie 19-35. (19A) 1902Google Scholar
  89. 1902 [3]
    Natanson, L.: Sur la fonction dissipative d’un fluide visqueux. Bull. Int. Acad. Sci. Cracovie 448–494. (19A) 1902Google Scholar
  90. 1902 [4]
    Natanson, L.: Sur la déformation d’un disque plastico-visqueux. Bull. Int. Acad. Sci. Cracovie 494–512. (19A) 1902Google Scholar
  91. 1902 [5]
    Natanson, L.: Sur la conductibilité calorifique d’un gaz en mouvement. Bull. Int. Acad. Sci. Cracovie 137–146. (19A) 1902Google Scholar
  92. 1903 [1]
    Duhem, P.: Sur la viscosité en un milieu vitreux. C. R. Acad. Sci. Paris 136, 281–283. (41) 1903Google Scholar
  93. 1903 [2]
    Duhem, P.: Sur les équations du mouvement et la relation supplémentaire au sein d’un milieu vitreux. C. R. Acad. Sci. Paris 136, 343–345. (41, 71) 1903Google Scholar
  94. 1903 [3]
    Duhem, P.: Sur la propagation des ondes dans un milieu parfaitement élastique affecté de déformations finies. C. R. Acad. Sci. Paris 136, 1379–1381. (90) 1903Google Scholar
  95. 1903 [4]
    Hadamard, J.: Leçons sur la Propagation des Ondes et les Équations de l’Hydrodynamique. Paris: Hermann. (31, 68b, 71, 74, 88, 89, 90) 1903Google Scholar
  96. 1903 [5]
    Natanson, L.: Über einige von Herrn B. Weinstein zu meiner Theorie der inneren Reibung gemachten Bemerkungen. Physik. Z. 4, 541–543. (19A) 1903MATHGoogle Scholar
  97. 1903 [6]
    Natanson, L.: Sur l’application des équations de Lagrange dans la théorie de la viscosité. Bull. Int. Acad. Sci. Cracovie 268–283. (19A)Google Scholar
  98. 1903 [7]
    Natanson, L.: Sur l’approximation de certaines équations de la théorie de la viscosité. Bull. Int. Acad. Sci. Cracovie 283–311. (19A) 1903Google Scholar
  99. 1903 [8]
    Zaremba, S.: Remarques sur les travaux de M. Natanson relatifs ¨¤ la théorie de la viscosité. Bull. Int. Acad. Sci. Cracovie 85–93. (19 A, 35) Handbuch der Physik, Bd. III/3. 35 1903 546 C. Truesdell and W. NoLL: Non-Linear Field Theories of Mechanics. 1903Google Scholar
  100. 1903 [9]
    Zaremba, S.: Sur une généralisation de la théorie classique de la viscosité. Bull. Int. Acad. Sci. Cracovie 380–403. (19A, 35) 1903Google Scholar
  101. 1903 [10]
    Zaremba, S.: Sur un problème d’hydrodynamique lié ¨¤ un cas double refraction accidentale dans les liquides et sur les considérations théoriques de M. NATANSON relatives ¨¤ ce phénomène. Bull. Int. Acad. Sci. Cracovie 403–423. (19 A, 35) 1903Google Scholar
  102. 1903 [11]
    Zaremba, S.: Sur une forme perfectionnée de la théorie de la relaxation. Bull. Int. Acad. Sci. Cracovie 594–614. (19A, 35, 36, 99, 119) 1903Google Scholar
  103. 1903 [12]
    Zaremba, S.: Le principe des mouvements relatifs et les équations de la mécanique physique. Bull. Int. Acad. Sci. Cracovie 614–621. (19 A, 35, 36, 99, 119) 1903Google Scholar
  104. 1904 [1]
    Duhem, P.: Recherches sur l’élasticité, Première Partie. De l’équilibre et du mouvement des milieux vitreux. Ann. École Normale (3) 21, 99–141. Repr. Paris: Gauthier-Villars 1906. (41) 1904Google Scholar
  105. 1905 [1]
    Duhem, P.: Recherches sur l’élasticité, Troisième Partie. La stabilité des milieux élastiques. Ann. École Norm. (3) 22, 143–217. Repr. Paris: Gauthier-Villars 1906. (52, 68b, 88, 89) 1905Google Scholar
  106. 1905 [2]
    Poincaré, H.: Science and Hypothesis. Transl. W. J. G. London. (3) 1905Google Scholar
  107. 1905 [3]
    Poynting, J. H.: Radiation-pressure. Phil. Mag. 9, 393–406 = Papers 2, 335–346. (54, 66) 1905Google Scholar
  108. 1906 [4]
    Born, M.: Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum unter verschiedenen Grenzbedingungen. Göttingen: Dieterische Univ.-Buchh. 101 pp. (88) 1906Google Scholar
  109. 1906 [1]
    Duhem, P.: Recherches sur l’élasticité. Quatrième Partie. Propriétés générales des ondes dans les milieux visqueux et non-visqueux. Ann. École Normale (3) 23, 169–225. Repr. Paris: Gauthier-Villars 1906. (71, 90)Google Scholar
  110. 1906 [2]
    Jaumann, G.: Elektromagnetische Vorgänge in bewegten Medien. Sitzgsber. Akad. Wiss. Wien (II a) 15, 337–390. (19A) 1906Google Scholar
  111. 1906 [3]
    Prandtl, L.: Zur Theorie des Verdichtungsstoßes. Z. ges. Turbinenwesen 3, 241–245= Ges. Abh. 2, 935–942. (96t) 1906Google Scholar
  112. 1907 [1]
    Cosserat, E. and F.: Sur la mécanique générale. C. R. Acad. Sci. Paris 145, 1139–1142. (19A, 98) 1907Google Scholar
  113. 1909 [1]
    Cosserat, E., and F.: Théorie des Corps Déformables. Paris: Hermann, vi-j226 pp. Publ. also as pp. 953–1173 of O. D. CXWOLSON, Traité de Physique, transi. E. DAVAUX, 2nd ed., 2, Paris 1909. (19 A, 98) 1909Google Scholar
  114. 1909 [2]
    Poynting, J. H.: On pressure perpendicular to the shear-planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. Roy. Soc. Lond. A 82, 546–559 = Papers 2, 358–371. (54, 66) 1909Google Scholar
  115. 1909 [3]
    Volterra, V.: Sulle equazioni integro-differenziali della teoria dell’elasticit¨¤. Rend. Lincei (5) 181, 295–301 = Opere 3, 288–293. (41) 1909Google Scholar
  116. 1909 [4]
    Volterra, V.: Equazioni integro-differenziali della elasticit¨¤ nel caso della isotropia. Rend. Lincei (5) 181, 577–586 = Opere 3, 294–303. (41) 1909Google Scholar
  117. 1910 [1]
    Kötter, F.: Über die Spannungen in einem ursprünglich geraden, durch Einzelkräfte in stark gekrümmter Gleichgewichtslage gehaltenen Stab. Sitzgsber. Preuss. Akad. Wiss. Teil 2, 895–922. (60, 66, 86) 1910Google Scholar
  118. 1910 [2]
    Voigt, W.: Lehrbuch der Kristallphysik. Leipzig u. Berlin: Teubner. (33) 1910Google Scholar
  119. 1911 [1]
    Almansi, E.: Sulle deformazioni finite dei solidi elastici isotropi, I. Rend. Accad. Lincei (5A) 201, 705–714. (86) 1911Google Scholar
  120. 1911 [2]
    Almansi, E.: Sulle deformazioni finite dei solidi elastici isotropi, III. Rend. Accad. Lincei (5A) 202, 289–296. (86) 1911Google Scholar
  121. 1911 [3]
    Houston, R. A.: A relation between tension and torsion. Phil. Mag. (6) 22, 740–741. (86) 1911Google Scholar
  122. 1911 [4]
    Jaumann, G.: Geschlossenes System physikalischer und chemischer Differential-gesetze. Sitzgsber. Akad. Wiss. Wien (II a) 120, 385–530. (19 A, 99) 1911Google Scholar
  123. 1912 [1]
    Hamel, G.: Elementare Mechanik. Leipzig u. Berlin: Teubner. (42) 1913Google Scholar
  124. 1912 [1]
    Heun, K.: Ansätze und allgemeine Methoden der Systemmechanik. Enz. math. Wiss. 42 (1904–1935), art. 11. (98) 1912Google Scholar
  125. 1912 [2]
    Poynting, J. H.: The changes in length and volume of an India-rubber cord whentwisted. India-Rubber J., Oct., 4, p. 6 = Papers 2, 424–425. (54, 66) 1912Google Scholar
  126. 1914 [1]
    Hellinger, E.: Die allgemeinen Ansätze der Mechanik der Kontinua. Enz. Math. Wiss. 44, 602–694. (42, 68b, 88, 98) 1914Google Scholar
  127. 1915 [1]
    Armanni, G.: Sulle deformazioni finite dei solidi elastici isotropi. Nouvo Cimento (6) 10, 427–447. (44) 1915Google Scholar
  128. 1916 [1]
    Almansi, E.: La teoria delle distorsioni e le deformazioni finite dei solidi elastici. Rend. Accad. Lincei (5) 25,, 191–192. (44) 1916Google Scholar
  129. 1917 [1]
    Lohr, E.: Entropieprinzip und geschlossenes Gleichungssystem. Denkschr. Akad. Wiss. Wien 93, 339–421. (99) 1917Google Scholar
  130. 1918 [1]
    Jaumann, G.: Physik der kontinuierlichen Medien. Denkschr. Akad. Wiss. Wien 95, 461–562. (99) 1918Google Scholar
  131. 1920 [1]
    Jouguet, E.: Sur les ondes de choc dans les corps solides. C. R. Acad. Sci. Paris 171, 461–464. (71, 73) 1920Google Scholar
  132. 1920 [2]
    Jouguet, E.: Sur la célérité des ondes dans les corps solides. C. R. Acad. Sci. Paris 171, 512–515. (71, 73, 77) 1920Google Scholar
  133. 1920 [3]
    Jouguet, E.: Sur la variation d’entropie dans les ondes de choc des solides élastiques. C. R. Acad. Sci. Paris 171, 789–791. (71, 73) 1920Google Scholar
  134. 1920 [4]
    Jouguet, E.: Application du principe de Carnot-Clausius aux ondes de choc des solides élastiques. C. R. Acad. Sci. Paris 171, 904–907. (71, 73) 1920Google Scholar
  135. 1921 [1]
    Jouguet, E.: Notes sur la théorie de l’élasticité. Ann. Toulouse (3) 12, (1920), 47–92. (71, 73) 1921Google Scholar
  136. 1921 [2]
    Weitzenböck, R.: Zur Tensoralgebra. Math. Z. 10, 80–87. (12) 1921Google Scholar
  137. 1924 [1]
    Ariano, R.: Deformazioni finite dei sistemi continui. Rend. Palermo 48, 97–120. (48) 1924Google Scholar
  138. 1924 [2]
    EddinroN, A. S.: The Mathematical Theory of Relativity, 2nd. ed. Cambridge. (19A) 1924Google Scholar
  139. 1925 [1]
    Ariano, R.: Deformazioni finite di sistemi continui. Memoria i¡ã. Ann. di Mat. (4) 2, 217–261. (42) 1925Google Scholar
  140. 1925 [2]
    Brillouin, L.: Sur les tensions de radiation. Ann. Physique (10) 4, 528–586. (42, 66, 68, 77) 1925Google Scholar
  141. 1926 [1]
    Sudria, J.: Contribution ¨¤ la théorie de l’action euclidienne. Ann. Fac. Sci. Toulouse (3) 17 (1925), 63–152. (98)Google Scholar
  142. 1927 [1]
    Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity. 4th ed. Cambridge. Reprinted by Dover Publications, New York, 1944. (66, 88) 1927Google Scholar
  143. 1927 [2]
    Reiner, M., and M. Riwlin: Die Theorie der Strömung einer elastischen Flüssigkeit im Couette-Apparat. Kolloid-Z. 43, 1–5. (113) 1927Google Scholar
  144. 1928 [1]
    Ariano, R.: Deformazioni finite di sistemi continui. Memoria 2¡ã. Ann. di Mat. Pura Appl. (4) 5, 55–71. (42) 1928Google Scholar
  145. 1928 [2]
    Farrow, F. D., G. M. Lowe, and S. M. Neale: The flow of starch pastes. Flow at high and low rates of shear. J. Textile Inst. 19, T 18¡ªT 31. (113) 1928Google Scholar
  146. 1928 [3]
    Murnaghan, F. D.: On the energy of deformation of an elastic solid. Proc. Nat. Acad. Sci. U.S.A. 14, 889–891. (47) 1928Google Scholar
  147. 1928 [4]
    Rabinowitsch, B.: Über die Viskosität und Elastizität von Sohlen. Z. phys. Chem., Abt. A 145, 1–26. (113) 1928Google Scholar
  148. 1929 [1]
    Ariano, R.: Deformazioni finite di sistemi continui. Memoria 3¡ã. Ann. di Mat. Pura Appl. (4) 6, 265–282. (42) 1929Google Scholar
  149. 1929 [2]
    Jaramillo, T. J.: A generalization of the energy function of elasticity theory. Diss. Univ. Chicago. (98) 1929Google Scholar
  150. 1929 [3]
    Lichtenstein, L.: Grundlagen der Hydromechanik. Berlin: Springer. (120) 1929Google Scholar
  151. 1930 [1]
    Ariano, R.: Deformazioni finite di sistemi continui, isotropi. Rend. Ist. Lombardo (2) 63, 740–754. (42, 48, 86) 1930Google Scholar
  152. 1930 [2]
    Mises, R. v.: Über die bisherigen Ansätze in der klassischen Mechanik der Kontinua. Proc. 3rd Int. Congr. Appl. Mech. Stockholm 2, 1–9. (3, 35) 1930Google Scholar
  153. 1930 [3]
    Signorini, A.: Sulle deformazioni termoelastiche finite. Proc. 3rd Int. Congr. Appl. Mech. 2, 80–89. (44, 47, 63, 64, 86) 1930Google Scholar
  154. 1931 [1]
    Anzelius, A.: Die Viskositätsanomalien der anisotropen Flüssigkeiten. Grundlegende Tatsachen. Uppsala Univ. Arsskr. Mat. Och Naturvet., 1–84. (127) 1931Google Scholar
  155. 1931 [2]
    Girault, M.: Essai sur la Viscosité en Mécanique des Fluides. Publ. Sci. Tech. Min. de l’Air, No. 4, Paris. (119, 120) 1931Google Scholar
  156. 1931 [3]
    Kaplan, C.: On the strain-energy function for isotropic bodies. Phys. Rev. (2) 38, 1020–1029. (66) 1931Google Scholar
  157. 1931 [4]
    Lampariello, G.: Sull’impossibilit¨¤ di propagazione ondosa nei fluidi viscosi. Rend. Accad. Lincei (6) 13, 688–691. (96t) 1931Google Scholar
  158. 1931 [5]
    Mooney, M.: Explicit formulae for slip and fluidity. J. Rheology 2, 210–222. (113) 1931Google Scholar
  159. 1931 [6]
    Murnaghan, F. D.: On finite deformations and the energy of deformation of a non-isotropic medium. Atti Congr. Internaz. Matem. Bologna (1928) 5, 151–153. (47) 1931Google Scholar
  160. 1931 [7]
    Weissenberg, K.: Die Mechanik deformierbarer Körper. Abh. Akad. Wiss. Berlin No. 2. (35) 1931Google Scholar
  161. 1932 [1]
    Bateman, H.: Part I, Ch. 3: General physical properties of a viscous fluid. Part I I: Motion of an incompressible viscous fluid. Part IV: Compressible fluids. Report of the Committee on Hydrodynamics Washington: Bull. Nat. Research Council No. 84. (116) 1932Google Scholar
  162. 1932 [2]
    Ceruti, G.: Sopra un’estensione della teoria elastica alla seconda approssimazione. Rend. Ist. Lombardo (2) 65, 997–1012. (66) 1932Google Scholar
  163. 1932 [3]
    Hohenemser, K., and W. Prager: Fundamental equations and definitions concerning the mechanics of isotropic continua. J. Rheol. 3, 245–256. (35) 1932Google Scholar
  164. 1932 [4]
    Hohenemser, K., and W. Prager: Über die Ansätze der Mechanik isotroper Kontinua. Z. angew. Math. Mech. 12, 216–226. (35) 1932Google Scholar
  165. 1932 [5]
    Lamb, H.: Hydrodynamics. 6th ed. Cambridge Univ. Press. Reprinted, Dover Publications, New York, 1945. (21, 74, 96, 116) 1932Google Scholar
  166. 1932 [6]
    Prandtl, L.: Extract from a letter to D. A. Grave, published in D. A. Grave: Physical foundations of hydrodynamics and aerodynamics [in Russian]. Isv. Akad. Nauk SSSR Otdel mat. est. nauk (Ser. VII) 1932, 763–782. (120) 1932Google Scholar
  167. 1933 [7]
    Signorini, A.: Sollecitazioni iperastatiche. Rend. Ist. Lombardo (2) 65, 1–7. (44) 1933Google Scholar
  168. 1933 [1]
    Ariano, R.: L’isotropia nelle deformazione finite. Rend. Ist. Lombardo 66, 1–13, 207–220. (42, 48) 1933Google Scholar
  169. 1933 [2]
    Fromm, E.: Stoffgesetze des isotropen Kontinuums, insbesondere bei zähplastischen Verhalten. Ing.-Arch. 4, 432–466. (36, 99, 119) 1933Google Scholar
  170. 1933 [3]
    Oseen, C. W.: The theory of liquid crystals. Trans. Faraday Soc. 29, 833–899. (127) 1933Google Scholar
  171. 1933 [4]
    Signorini, A.: Sulle deformazione finite dei sistemi a trasformazioni reversibili. Rend. Accad. Lincei (6) 18, 388–394. (86) 1933Google Scholar
  172. 1933 [5]
    Thompson, J. H. C.: On the theory of visco-elasticity, and some problems of the vibrations of visco-elastic solids. Phil. Trans. Roy. Soc. Lond. A 231, 339–407. (120) 1933Google Scholar
  173. 1935 [1]
    De Backer, S.: Les fluides visqueux et les ondes propageables. C. R. Acad. Sci. Paris 200, 899–901. (119) 1935Google Scholar
  174. 1935 [2]
    Seth, B. R.: Finite strain in elastic problems. Phil. Trans. Roy. Soc. Lond. (A) 234, 231–264. (48) 1935Google Scholar
  175. 1935 [3]
    Sudria, J.: L’action Euclidienne de Deformation et de Mouvement. Mém. Sci. Phys. No. 29. Paris: Gauther-Villars. 56 pp. (98) 1935Google Scholar
  176. 1936 [1]
    De Backer, S.: Les fluides visqueux et les ondes propageables. Évolution d’un gaz monoatomique et polyatomique. Bull. Acad. Roy. Belg., Cl. Sci. (5) 22, 1284–1295. (119)Google Scholar
  177. 1935 [2]
    Halton, P., and G. W. Scott Blair: A study of some physical properties of flour doughs in relation to their bread-making qualities. J. Phys. Chem. 40, 561–580. (114)Google Scholar
  178. 1935 [3]
    Signorini, A.: Trasformazioni termoelastiche finite, caratteristiche dei sistemi differenziali, onde di discontinuit¨¤ in particolare, onde d’urto e teoria degli esplosivi. Atti XXIV Riun. Soc. Ital. Progr. Sci. 3, 6–25. (42, 63, 64, 88) 1935Google Scholar
  179. 1937 [1]
    De Backer, S.: Les fluides visqueux et les ondes propageables. Bull. Acad. Roy. Belg. Cl. Sci. (5) 23, 59–72, 262–273. (119) 1937Google Scholar
  180. 1937 [2]
    Murnaghan, F. D.: Finite deformation of an elastic solid. Amer. J. Math. 59, 235–260. (4, 42, 43, 48, 66, 85) 1937Google Scholar
  181. 1937 [3]
    Van Der Waerden, B. L.: Moderne Algebra I, 2. Aufl. Berlin: Springer. (10) 1937Google Scholar
  182. 1937 [4]
    Zaremba, S. Sur une Conception Nouvelle des Forces Intérieures dans un Fluide en Mouvement. Mém. Sci. Math. No. 82. Paris: Gauthier-Villars. (19A, 36, 119) 1937Google Scholar
  183. 1938 [1]
    Birch, F.: The effect of pressure upon the elastic parameters of isotropic solids, according to MURNAGHAN’S theory of finite strain. J. Appl. Phys. 9, 279–288. (75) 1938Google Scholar
  184. 1938 [2]
    Brillouin, L.: Les Tenseurs en Mécanique et en Élasticité. 2nd ed. Paris: Masson 1960. (42, 45, 66, 68, 77) 1938Google Scholar
  185. 1938 [3]
    Kilchevski, N.: A new theory of the mechanics of continuous media [in Ukrainian]. Zbirnik Inst. Mat. Akad. Nauk URSR, No. 1, 17–114. (35) 1938Google Scholar
  186. 1938 [4]
    Prager, W.: On isotropic materials with continuous transition from elastic to plastic state. Proc. 5th Internat. Congr. Appl. Mech. (Cambridge), pp. 234–237. (103) 1938Google Scholar
  187. 1939 [1]
    Kappus, R.: Zur Elastititätstheorie endlicher Verschiebungen. Z. angew. Math. Mech. 19, 271–285, 344–361. (42) 1938Google Scholar
  188. 1938 [2]
    Weyl, H.: The Classical Groups, their Invariants and Representations. Princeton Univ. Press. Reprinted 1953. (10, 11) 1938Google Scholar
  189. 1940 [1]
    Blot, M.: The influence of initial stress on elastic waves. J. Appl. Phys. 11, 522–530. (75) 1940Google Scholar
  190. 1940 [2]
    Born, M., and R. D. Misra: On the stability of crystal lattices, IV. Proc. Cambridge Phil. Soc. 36, 466–478. (66) 1940Google Scholar
  191. 1940 [3]
    Brillouin, M.: Influence de la Température sur l’Élasticité d’un Solide. Mém. Sci. Math. 99. Paris: Gauthier-Villars. (68) 1940Google Scholar
  192. 1940 [4]
    Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592. (54, 95) 1940Google Scholar
  193. 1941 [1]
    Murnaghan, F. D.: The compressibility of solids under extreme pressures. Kârman Anniv. Vol. 121–136. (42)1941Google Scholar
  194. 1941 [2]
    Prager, W.: A new mathematical theory of plasticity. Rev. Fac. Sci. Univ. Istanbul A 5, 215–226. (103)1941Google Scholar
  195. 1941 [3]
    Sakadi, Z.: On the extension of the differential equations of incompressible viscous fluid. Proc. Physico-Math. Soc. Japan (3) 23, 27–33. (119) 1941Google Scholar
  196. 1941 [4]
    Timoshenko, S. P.: Strength of Materials, II. 2nd ed. New York: Van Nostrand. (66) 1941Google Scholar
  197. 1942 [1]
    De Colle, L.: Teorema di minimo relativo a fluidi viscosi generali. Rend. Ist. Lombardo Sci. Lett. Rend., Cl. Sci. Mat. Nat. 75 = (6) 3, 343–352. (119) 1942Google Scholar
  198. 1942 [2]
    Finzi, B.: Propagazione ondosa nei continui anisotropi. Rend. Ist. Lombardo, Cl. Sci. Mat. Nat. 75 = (3) 6 (1941/42), 630–640. (71) 1942Google Scholar
  199. 1942 [3]
    Hay, G. E.: The finite displacement of thin rods. Trans. Amer. Math. Soc. 51, 65–102. (60) 1942Google Scholar
  200. 1942 [4]
    Prager, W.: Fundamental theorems of a new mathematical theory of plasticity. Duke Math. J. 9, 228–233. (103) 1942Google Scholar
  201. 1942 [5]
    Sakadi, Z.: On the extension of the differential equations of incompressible fluid, II. Proc. Physico-Math. Soc. Japan (3) 24, 719–722. (119) 1942Google Scholar
  202. 1942 [6]
    Signorini, A.: Deformazioni elastiche finite: elasticit¨¤ di 2¡ã grado. Atti 2¡ã Congr. Mat. Ital. 1940, pp. 56–71. (64, 94) 1942Google Scholar
  203. 1942 [7]
    Tolotti, C.: Sulla pill generale elasticit¨¤ di 2¡ã grado. Rend. Sem. Mat. Univ. Roma (5) 3, 1–20. (94)Google Scholar
  204. 1942 [8]
    Zener, C.: Theory of lattice expansion introduced by cold-work. Trans. Amer. Inst. Mining Met. Engrs. 147, 361–364. (93) 1942Google Scholar
  205. 1943 [1]
    Merrington, A. C.: Flow of visco-elastic materials in capillaries. Nature, Lond. 152, 663. (114) 1943Google Scholar
  206. 1943 [2]
    Reiner, M.: Ten Lectures on Theoretical Rheology. Jerusalem. (There are later, expanded editions.) (35) 1943Google Scholar
  207. 1943 [3]
    Signorini, A.: Trasformazioni termoelastiche finite. Mem. 1¡ã, Ann. di Mat. (4) 22, 33–143. (42, 43, 47, 50) 1943Google Scholar
  208. 1943 [4]
    Tolotti, C.: Orientamenti principali di un corpo elastico rispetto alla sua sollecitazione totale. Mem. Accad. Italia, Cl. sci. mat. nat. (7) 13, 1139–1162. (64) 1943Google Scholar
  209. 1943 [5]
    Tolotti, C.: Deformazione elastiche finite: onde ordinarie di discontinuit¨¤ e caso tipico di solidi elastici isotropi. Rend. Mat. e Applic. (5) 4, 33–59. (71, 74) 1943Google Scholar
  210. 1943 [6]
    Tolotti, C.: Sul potenziale termodinamico dei solidi elastici omogenei ed isotropi per trasformazioni finite. Atti R. Accad. Italia 14, 529–541. (84) 1943Google Scholar
  211. 1943 [7]
    Udeschini, P.: Sull’energia di deformazione. Rend. Ist. Lombardo (3) 7 = 76, 25–34. (83) 1943Google Scholar
  212. 1944 [1]
    Murnaghan, F. D.: The compressibility of media under extreme pressures. Proc. Nat. Acad. Sci. U.S.A. 30 244–247. (99, 103) 1944Google Scholar
  213. 1944 [2]
    Murnaghan, F. D.: On the theory of the tension of the elastic cylinder. Proc. Nat. Acad. Sci. U.S.A. 30, 382–384. (99, 103) 1944Google Scholar
  214. 1944 [3]
    Seth, B. R.: On the stress-strain velocity relations in equations of viscous flow. Proc. Indian Acad. Sci. (A) 20, 336–339. (119) 1944Google Scholar
  215. 1945 [1]
    Murnaghan, F. D.: A revision of the theory of elasticity. Bol. Soc. Mat. Mexicana 2, 81–89. (99, 103) 1945Google Scholar
  216. 1945 [2]
    Prager, W.: Strain hardening under combined stresses. J. App. Phys. 16, 837–840. (12, 43) 1945Google Scholar
  217. 1945 [3]
    Reiner, M.: A mathematical theory of dilatancy. Amer. J. Math. 67, 350–362. Reprinted in Rational Mechanics of Materials, Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (4, 12, 111, 114, 119, 120) 1945Google Scholar
  218. 1945 [4]
    Signorini, A.: Recenti progressi della teoria delle trasformazioni termoelastiche finite. Atti Cony. Mat. Roma 1942, pp. 153–168. (43, 63, 64, 71, 94) 1945Google Scholar
  219. 1946 [1]
    Cattaneo, C.: Su un teorema fondamentale nella teoria delle onde di discontinuit¨¤. Atti Accad. Sci. Lincei Rend., Cl. Sic. Fis. Mat. Nat. (8) 1, 66–72, 728–734. (68h, 71, 73) 1946Google Scholar
  220. 1946 [2]
    Garner, F. H., and A. H. Nissan: Rheological properties of high-viscosity solutions of long molecules. Nature, Lond. 158, 634–635. (114) 1946Google Scholar
  221. 1946 [3]
    Reiner, M.: The coefficient of viscous traction. Amer. J. Math. 68, 672–680. (118) 1946Google Scholar
  222. 1946 [1]
    Bhagavantam, S., and R. Suryanarayana: Third-order elastic coefficients of crystals. Nature, Lond. 160, 750–751. (66) 1946Google Scholar
  223. 1946 [2]
    Birch, F.: Finite elastic strain of cubic crystals. Phys. Rev. (2) 71, 809–824. (66) 1946Google Scholar
  224. 1946 [3]
    Fromm, H.: Laminare Strömung Newtonscher und Maxwellscher Flüssigkeiten. Z. angew. Math. Mech. 25/27, 146–150. (111, 113, 119) 1946Google Scholar
  225. 1946 [4]
    Garcia, G.: Ecuaciones exactas y soluciones exactas del movimiento y de las tensiones en los fluidos viscosas. Actas Acad. Ciencias Lima 10, 117–170. (119) 1946Google Scholar
  226. 1946 [5]
    Handelman, G. H., C. C. Lin, and W. Prager: On the mechanical behavior of metals in the strain-hardening range. Quart. Appl. Math. 4, 397–407. (43) 1946Google Scholar
  227. 1946 [6]
    Kutilin, D. I.: Theory of Finite Deformations [in Russian]. Moscow and Leningrad: OGIZ. 275 pp. (42, 98) 1946Google Scholar
  228. 1946 [7]
    Oldroyd, J. G.: Rectilinear plastic flow of a Bingham solid, I. Flow between eccentric circular cylinders in relative motion. Proc. Cambridge Phil. Soc. 43, 396–405. (117)1946Google Scholar
  229. 1946 [8]
    Oldroyd, J. G.: Rectilinear plastic flow of a Bingham solid, II. Flow between confocal elliptic cylinders in relative motion. Proc. Cambridge Phil. Soc. 43, 521–532. (117) 1946Google Scholar
  230. 1946 [9]
    Rivlin, R. S.: Torsion of a rubber cylinder. J. Appl. Phys. 18, 444–449, 837. (57, 95) 1946Google Scholar
  231. 1946 [10]
    Rivlin, R. S.: Hydrodynamics of non-Newtonian fluids. Nature, Lond. 160, 611–613. (119) 1946Google Scholar
  232. 1946 [11]
    Swift, H. W.: Length changes in metals under torsional overstrain. Engineering 163, 253–257. (66) 1946Google Scholar
  233. 1946 [12]
    Truesdell, C., and R. N. Schwartz: The Newtonian mechanics of continua. U.S. Naval Ordnance Lab. Memo. 9223. (28, 119, 119A) 1946Google Scholar
  234. 1946 [13]
    Van Hove, L.: Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples ¨¤ plusieurs fonctions inconnues. Proc. Kon. Ned. Akad. Wet. 50, 18–23. (68b) 1946Google Scholar
  235. 1946 [14]
    Viguier, G.: Les équations de la couche limite dans le cas de gradients de vitesse élevés. C. R. Acad. Sci. Paris 224, 713–714. (119)1946Google Scholar
  236. 1946 [15]
    Viguier, G.: L’écoulement d’un fluide visqueux avec gradients de vitesse élevés. C. R. Acad. Sci. Paris 224, 1048–1050. (119) 1946Google Scholar
  237. 1946 [16]
    Viguier, G.: La couche limite de Prandtl avec importants gradients de vitesses. C. R. Acad. Sci. Paris 225, 45–46. (119) 1946Google Scholar
  238. 1946 [17]
    Weissenberg, K.: A continuum theory of rheological phenomena. Nature, Lond. 159, 310–311. (114, 119)1946Google Scholar
  239. 1946 [18]
    Wood, G. F., A. H. Nissan, and F. H. Garner: Viscometry of soap-in-hydrocarbon systems. J. Inst. Petrol. 33, 71–94. (114) 1946Google Scholar
  240. 1948 [1]
    Burgers, J. M.: Non-linear relations between viscous stresses and instantaneous rate of deformation as a consequence of slow relaxation. Proc. Kon. Ned. Akad. Wet. 51, 787–792. (119) 1948Google Scholar
  241. 1948 [2]
    Courant, R., and K. O. Friedrichs: Supersonic Flow and Shock Waves. New York: Interscience Publ. (74) 1948Google Scholar
  242. 1948 [3]
    Eckart, C.: The thermodynamics of irreversible processes, IV. The theory of elasticity and anelasticity. Phys. Rev. (2) 73, 373–382. (28) 1948Google Scholar
  243. 1948 [4]
    Fromm, H.: Laminare Strömung Newtonscher und Maxwellscher Flüssigkeiten. Z. angew. Math. Mech. 28, 43–54. (119) 1948Google Scholar
  244. 1948 [5]
    Garcia, G.: Sur une formule, cardinale et canonique des tensions internes et sur l’équation cardinale, canonique de mouvement des fluides visqueux. Ann. Soc. Polonaise Math. 21, 107–113. (119) 1948Google Scholar
  245. 1948 [6]
    Kuno, R.: Large elastic deformation of rubber. J. Phys. Soc. Japan 3, 312–317. (95) 1948Google Scholar
  246. 1948 [7]
    Oldroyd, J. G.: Rectilinear plastic flow of a Bingham solid, III. A more general discussion of steady flow. Proc. Cambridge Phil. Soc. 44, 200–213. (117) 1948Google Scholar
  247. 1948 [8]
    Oldroyd, J. G.: Rectilinear plastic flow of a Bingham solid, IV. Non-steady motion. Proc. Cambridge Phil. Soc. 44, 214–228. (117) 1948Google Scholar
  248. 1948 [9]
    Reiner, M.: Elasticity beyond the elastic limit. Amer. J. Math. 70, 433–446. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (4, 43, 47, 54)Google Scholar
  249. 1948 [10]
    Richter, H.: Das isotrope Elastizitätsgesetz. Z. angew. Math. Mech. 28, 205–209. (12, 42, 43, 47)1948Google Scholar
  250. 1948 [11]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, I. Fundamental concepts. Phil. Trans. Roy. Soc. Lond. A 240, 459–490. (95) 1948Google Scholar
  251. 1948 [11A]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, II. Some uniqueness theorems for pure, homogeneous deformation. Phil. Trans. Roy. Soc. London A 240, 491 508. (95) 1948Google Scholar
  252. 1948 [11111]
    Rivlin, R.S.: Large elastic deformations of isotropic materials, III. Some simple problems in cylindrical polar co-ordinates. Phil. Trans. Roy. Soc. London A 240, 509–525. (95) 1948Google Scholar
  253. 1948 [12]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, IV. Further developments of the general theory. Phil. Trans. Roy. Soc. Lond. A 241, 379–397. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (4, 54, 55, 57, 86)Google Scholar
  254. 1948 [13]
    Rivlin, R. S.: A uniqueness theorem in the theory of highly-elastic materials. Proc. Cambridge Phil. Soc. 44, 595–597. (95)Google Scholar
  255. 1948 [14]
    Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids, I. Proc. Roy. Soc. Lond. 193, 260–281. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (4, 111, 113, 114, 115, 116, 119)Google Scholar
  256. 1948 [15]
    Rivlin, R. S.: Some applications of elasticity theory to rubber engineering. Proc. 2nd Tech. Conf. (London, June 23–25, 1948). Cambridge: Heffer. (54) 1948Google Scholar
  257. 1948 [16]
    Rivlin, R. S.: Normal stress coefficient in solutions of macromolecules. Nature, Lond. 161, 567–569. (119) 1948Google Scholar
  258. 1948 [17]
    Stone, M. H.: Generalized Weierstrass approximation theorem. Math. Mag. 21, 167–184, 237–254. (37) 1948Google Scholar
  259. 1948 [18]
    Truesdell, C.: A new definition of a fluid. U.S. Naval Ord. Lab. Mem. 9487. (125)Google Scholar
  260. 1948 [19]
    Truesdell, C.: On the differential equations of slip flow. Proc. Nat. Acad. Sci. U.S.A. 34, 342–347. (120, 125)Google Scholar
  261. 1948 [20]
    Viguier, G.: Quelques remarques sur la couche limite de Prandtl. Son équation dans le cas de gradients de vitesse élevés. Recherche Aeron. No. 1, pp. 7–9. (119)Google Scholar
  262. 1949 [1]
    Bhagavantam, S., and D. Suryanarayana: Crystal symmetry and physical properties: Application of group theory. Acta Cryst. 2, 21–26. (66) 1949Google Scholar
  263. 1949 [2]
    Freeman, S. M., and K. Weissenberg: Rheology and the constitution of matter. Proc. Intl. Congr. Rheology 1948. Amsterdam: North Holland Publ. Co., pp. II 12¡ªII 14. (114) 1949Google Scholar
  264. 1949 [3]
    Garcia, G.: Ecuaciones cardinales canonicas exactas para los movimientos finitos y las tensiones en los fluidos viscosas. Actas Acad. Ciencias Lima 12, 3–30. (119) 1949 1949Google Scholar
  265. 1949 [4]
    Gleyzal, A.: A mathematical formulation of the general continuous deformation problem. Quart. Appl. Math. 6, 429–437. (43, 103) 1949 1949Google Scholar
  266. 1949 [5]
    Greenberg, H. J.: On the variational principles of plasticity. Grad. Div. Applied Math. Brown Univ. Rep. A 11–54, March. (88) 1949 1949Google Scholar
  267. 1949 [6]
    Jahn, H. A.: Note on the Bhagavantam-Suryanarayana method of enumerating the physical constants of crystals. Acta Cryst. 2, 30–33. (66) 1949 1949Google Scholar
  268. 1949 [7]
    Kondo, K.: A proposal of a new theory concerning the yielding of materials based on Riemannian geometry. J. Japan Soc. Appl. Mech. 2, 123–128, 146–151. (34) 1949 1949Google Scholar
  269. 1949 [8]
    Milne-Thomson, L. M.: Finite elastic deformations. Proc. 7th Internat. Congr. Appl. Mech. (1948) 1, 33–40. (42)Google Scholar
  270. 1949 [9]
    Murnaghan, F. D.: A revision of the theory of elasticity. Anais Acad. Brasil Ci. 21, 329–336. (45, 99) 1949Google Scholar
  271. 1949 [10]
    Murnaghan, F. D.: The foundations of the theory of elasticity (1947). Nonlinear Problems in the Mechanics of Continua, pp. 158–174. New York. (99, 103)Google Scholar
  272. 1949 [11]
    Oldroyd, J. G.: Rectilinear flow of non-Bingham plastic solids and non-Newtonian viscous liquids, I. Proc. Cambridge Phil. Soc. 45, 595–611. (117, 119) 1949Google Scholar
  273. 1949 [12]
    Pastori, M.: Propagazione ondosa nei continui anisotropi e corrispondenti direzioni principali. Nuovo Cimento (9) 6, 187–193. (90) 1949Google Scholar
  274. 1949 [13]
    Reiner, M.: Relations between stress and strain in complicated systems. Proc. Int. Congr. Rheology 1948. IV-44-IV-63. (119) 1949Google Scholar
  275. 1949 [14]
    Richter, H.: Verzerrungstensor, Verzerrungsdeviator, und Spannungstensor bei endlichen Formänderungen. Z. angew. Math. Mech. 29, 65–75. (42) 1949Google Scholar
  276. 1949 [15]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, V. The problem of flexure. Proc. Roy. Soc. Lond. A 195, 463–473. Reprinted in Problems of Nonlinear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (4, 57, 92)Google Scholar
  277. 1949 [16]
    Rivlin, R. S.: Large elastic deformations of isotropic materials, VI. Further results in the theory of torsion, shear, and flexure. Phil. Trans. Roy. Soc. Lond. A 242, 173–195. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (4, 55, 57, 59, 87, 92, 95)Google Scholar
  278. 1949 [17]
    Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids, II. Proc. Cambridge Phil. Soc. 45, 88–91. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (4, 113)Google Scholar
  279. 1949 [18]
    Rivlin, R. S.: A note on the torsion of an incompressible, highly-elastic cylinder. Proc. Cambridge Phil. Soc. 45, 485–487. Reprinted in Problems of Non-linear Elasticity. Intl. Sei. Rev. Ser. New York: Gordon and Breach 1965. (4, 57, 92)Google Scholar
  280. 1949 [19]
    Rivlin, R. S.: The normal-stress coefficient in solutions of macro-molecules. Trans. Faraday Soc. 45, 739–748. (119)Google Scholar
  281. 1949 [20]
    Sakadi, Z.: On elasticity problems when the second order terms of the strain are taken into account, II. Mem. Fac. Eng. Nagoya 1, 95–107. (66) 1949Google Scholar
  282. 1949 [21]
    Signorini, A.: Trasformazioni termoelastiche finite. Memoria 2¡ã. Ann. di Mat. Pur. Appl. (4) 30, 1–72. (42, 63, 64, 87, 88, 94) 1949Google Scholar
  283. 1949 [22]
    Truesdell, C.: A new definition of a fluid, I. The Stokesian fluid. Proc. 7th Internat. Congr. Appl. Mech. (1948) 2, 351–364. (108, 119, 119A, 120)Google Scholar
  284. 1949 [23]
    Truesdell, C.: A new definition of a fluid, II. The Maxwellian fluid. U.S. Naval Res. Lab. Rep. No. P-3553. (96, 119, 125) 1949Google Scholar
  285. 1949 [24]
    Viguier, G.: Les forces tangentielles de viscosité avec gradients de vitesse élevés. Experientia 5, 397–398. (119) 1949Google Scholar
  286. 1949 [25]
    Viguier, G.: Nouvelles équations de la mécanique des fluides visqueux. Hrvatsko Prirodoslovno Drustvo. Glasnik Mat.-Fiz. Astr. (II) 4, 193–200. (119) 1949Google Scholar
  287. 1949 [26]
    Weissenberg, K.: Geometry of rheological phenomena (1946–1947). The Principles of Rheological Measurement, pp. 36–65. London. (114, 119)Google Scholar
  288. 1949 [27]
    Weissenberg, K.: Abnormal substances and abnormal phenomena of flow. Proc. Intl. Congr. Rheology 1948. Amsterdam: North Holland Publ. Co., pp. I-29¡ªI-46. (114, 119)Google Scholar
  289. 1949 [28]
    Weissenberg, K.: Specification of rheological phenomena by means of a rheogoniometer. Proc. Intl. Congr. Rheology 1948. Amsterdam: North Holland Publ. Co., pp. II 114¡ªII 118. (115)Google Scholar
  290. 1950 [1]
    Garner, F. H., A. H. Nissan, and G. F. Wood: Thermodynamics and rheological behavior of elastico-viscous systems under stress. Phil. Trans. Roy. Soc. Lond. A 243, 37–66. (113, 114, 115) 1950Google Scholar
  291. 1950 [2]
    Green, A. E., and W. Zerna: Theory of elasticity in general co-ordinates. Phil. Mag. (7) 41, 313–336. (42) 1950Google Scholar
  292. 1950 [3]
    Green, A. E., and R. T. Shied: Finite elastic deformation of incompressible isotropic bodies. Proc. Roy. Soc. Lond. A 202, 407–419. (57) 1950Google Scholar
  293. 1950 [4]
    Goldenblat, I. I.: On a problem in the mechanics of finite deformation of continuous media [in Russian], C. R. Dokl. Acad. Sci. SSR 70, 973–976. (86) 1950Google Scholar
  294. 1950 [5]
    Huang, K.: On the atomic theory of elasticity. Proc. Roy. Soc. Lond. A 203, 178–194. (45) 1950Google Scholar
  295. 1950 [6]
    Kondo, K.: On the dislocation, the group of holonomy and the theory of yielding. J. Japan. Soc. Appl. Mech. 3, 107–110. (34) 1950Google Scholar
  296. 1950 [7]
    Kondo, K.: On the fundamental equations of the theory of yielding. J. Japan Soc. Appl. Mech. 3, 184–188. (34) 1950Google Scholar
  297. 1950 [8]
    Kondo, K.: The mathematical analyses of the yield point, I. Uniform stress. J. Japan Soc. Appl. Mech. 3, 188–195. (34) 1950Google Scholar
  298. 1950 [9]
    Kondo, K.: Mathematical analyses of the yield point, II. J. Japan Soc. Appl. Mech. 4, 4–8. (34) 1950Google Scholar
  299. 1950 [10]
    Lichnerowicz, A.: Eléments du Calcul Tensoriel. Paris: Armand Colin. Engl. transl., Elements of Tensor Calculus. New York: John Wiley and Sons. (6) 1950Google Scholar
  300. 1950 [11]
    Oldroyd, J. G.: On the formulation of rheological equations of state. Proc. Roy. Soc. Lond. A 200, 523–541. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (19A, 36, 37, 113, 119)Google Scholar
  301. 1950 [12]
    Oldroyd, J. G.: Finite strains in an anisotropic elastic continuum. Proc. Roy. Soc. Lond. A 202, 407–419. (43, 69, 84) 1950Google Scholar
  302. 1950 [13]
    Rivlin, R. S.: On the definition of strain. Some Recent Developments in Rheology, pp. 125–129. London: United Trade Press. (43) 1950Google Scholar
  303. 1950 [14]
    Rivlin, R. S.: Some flow properties of concentrated high-polymer solutions. Proc. Roy. Soc. Lond. A 200, 168–176. (104) 1950Google Scholar
  304. 1950 [15]
    Signorini, A.: Un semplice esempio di `incompatibilith’ tra la elastostatica classica e la teoria delle deformazioni elastiche finite. Acad. Naz. Lincei Rend. Cl. fis. mat. nat. (8) 8, 276–281. (63, 64) 1950Google Scholar
  305. 1950 [16]
    Truesdell, C.: A new definition of a fluid, I. The Stokesian fluid. J. Math. Pures Appl. (9) 29, 215–244. (3, 13, 108, 119, 119A, 120, 121) 1950Google Scholar
  306. 1950 [17]
    Weissenberg, K.: Rheology of hydrocarbon gels. Proc. Roy. Soc. Lond. A 200, 183–188. (114, 119) 1950Google Scholar
  307. 1951 [1]
    Fulfil, F. G.: Third-order elastic coefficients of crystals. Phys. Rev. (2) 83, 1274–1275. (66)Google Scholar
  308. 1951 [2]
    Green, A. E., and R. T. Shield: Finite extension and torsion of cylinders. Phil. Trans. Roy. Soc. Lond. A 224, 47–86. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (67, 70)Google Scholar
  309. 1951 [3]
    Greensmith, H. W., and R. S. Rivlin: Measurements of the normal stress effect in solutions of polyisobutylene. Nature, Lond. 168, 664–667. (115, 116)Google Scholar
  310. 1951 [4]
    Ishihara, A., N. Hashitsume, and M. Tatibana: Statistical theory of rubber-like elasticity. IV. Two-dimensional stretching. J. Chem. Phys. 19, 1508–1512. (95)Google Scholar
  311. 1951 [5]
    Kondo, K.: Mathematical analyses of the yield point, III. Isotropic stress. J. Japan Soc. Appl. Mech. 4, 35–38. (34)Google Scholar
  312. 1951 [6]
    Lodge, A. S.: On the use of convected coordinate systems in the mechanics of continuous media. Proc. Cambridge Phil. Soc. 47, 575–584. (15)Google Scholar
  313. 1951 [7]
    Mooney, M.: Secondary stresses in viscoelastic flow. J. Colloid Sci. 6, 96–107. (119)Google Scholar
  314. 1951 [8]
    Murnaghan, F. D.: Finite Deformation of an Elastic Solid. New York: John Wiley and Sons. (42, 66, 103)Google Scholar
  315. 1951 [9]
    Oldroyd, J. G.: The motion of an elastico-viscous liquid contained between coaxial cylinders, I. Quart. J. Mech. Appl. Math. 4, 271–282. (36, 113, 119) List of Works Cited. 553Google Scholar
  316. 1951 [10]
    Oldroyd, J. G.: Rectilinear flow of non-Bingham plastic solids and non-Newtonian viscous liquids, II. Proc. Cambridge Phil. Soc. 47, 410–418. (117, 119)Google Scholar
  317. 1951 [11]
    Reiner, M.: The theory of cross-elasticity [in Hebrew]. Hebrew Inst. Tech. Sci. Publ. 4, 15–30. (43)Google Scholar
  318. 1951 [12]
    Reiner, M.: The rheological aspect of hydrodynamics. Quart. Appl. Math. 8, 341–349. (119)Google Scholar
  319. 1951 [13]
    Rivlin, R. S.: Mechanics of large elastic deformations with special reference to rubber. Nature, Lond. 167, 590–595. (42)Google Scholar
  320. 1951 [14]
    Rivlin, R. S., and D. W. Saunders: Large elastic deformations of isotropic materials, VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. Lond. A 243, 251–288. (53, 55, 57, 67, 93, 95)Google Scholar
  321. 1951 [15]
    Rivlin, R. S., and A. G. Thomas: Large elastic deformations of isotropic materials, VIII. Strain distribution around a hole in a sheet. Phil. Trans. Roy. Soc. Lond. A 243, 289–298. (60)Google Scholar
  322. 1951 [16]
    Sips, R.: Propagation phenomena in elastic-viscous media. J. Polymer Sci. 6, 285–293 (96t)Google Scholar
  323. 1951 [17]
    Truesdell, C.: A new definition of a fluid, II. The Maxwellian fluid. J. Math. Pures Appl. 30, 111–155. (13, 96, 119, 125)Google Scholar
  324. 1951 [18]
    Viguier, G.: Circulation d’un fluide visqueux incompressible. Bull. Acad. Roy. Belg. Cl. Sci. (5) 37, 397–405. (119)Google Scholar
  325. 1952 [1]
    Adkins, J. E., and R. S. Rivlin: Large elastic deformations of isotropic materials, IX. The deformation of thin shells. Phil. Trans. Roy. Soc. Lond. A 244, 505–531. (60)Google Scholar
  326. 1952 [2]
    Andersson, B.: On the stress-tensor of viscous isotropic fluids. Ark. Fysik 4, 501–503. (116)Google Scholar
  327. 1952 [3]
    Braun, I., and M. Reiner: Problems of cross-viscosity. Quart. J. Mech. Appl. Math. 5, 42–53. (114, 119)Google Scholar
  328. 1952 [4]
    Fuhi, F. G.: Physical properties of crystals: The direct-inspection method. Acta Cryst. 5, 44–48. (66)Google Scholar
  329. 1952 [5]
    Fumi, F. G.: The direct-inspection method in systems with a principal axis of symmetry. Acta Cryst. 5, 691–695. (66)Google Scholar
  330. 1952 [6]
    Fumi, F. G.: Third-order elastic coefficients in trigonal and hexagonal crystals. Phys. Rev. (2) 86, 561. (66)Google Scholar
  331. 1952 [7]
    Gent, A. N., and R. S. Rivlin: Experiments on the mechanics of rubber, I. Eversion of a tube. Proc. Phys. Soc. Lond. B 65, 118–121. (57)Google Scholar
  332. 1952 [8]
    Gent, A. N., and R. S. Rivlin: Experiments on the mechanics of rubber, II. The torsion, inflation, and extension of a tube. Proc. Phys. Soc. Lond. B 65, 487–501. (57)Google Scholar
  333. 1952 [9]
    Gent, A. N., and R. S. Rivlin: Experiments on the mechanics of rubber, III. Small torsion of stretched prisms. Proc. Phys. Soc. Lond. B 65, 645–648. (70)Google Scholar
  334. 1952 [10]
    Grad, H.: Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals. Comm. Pure Appl. Math. 5, 455–494. (98)Google Scholar
  335. 1952 [11]
    Green, A. E., R. S. Rivlin, and R. T. Shield: General theory of small elastic deformations superposed on finite elastic deformations. Proc. Roy. Soc. Lond. A 211, 128–154. (68, 69, 70)Google Scholar
  336. 1952 [12]
    Greensmith, H. W.: Flow Properties of High Polymers. Thesis, Univ. London. (115, 116)Google Scholar
  337. 1952 [13]
    Konno, K.: On the geometrical and physical foundation of the theory of yielding. Proc. 2nd Japan Congr. Appl. Mech. pp. 41–47. (34)Google Scholar
  338. 1952 [14]
    Markovitz, H.: A property of Bessel functions and its application to the theory of two rheometers. J. Appl. Phys. 23, 1070–1077. (113)Google Scholar
  339. 1952 [15]
    Reiner, M.: A possible cross-viscosity effect in air. Bull. Res. Council Israel 2, 65. (119)Google Scholar
  340. 1952 [16]
    Richter, H.: Zur Elastizitätstheorie endlicher Verformungen. Math. Nachr. 8, 65–73. English transl. in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (42, 43, 47)Google Scholar
  341. 1952 [17]
    Rivlin, R. S., and D. W. Saunders: The free energy of deformation for vulcanised rubber. Trans. Farady Soc. 48, 200–206. (55)Google Scholar
  342. 1952 [18]
    Rivlin, R. S., and A. G. Thomas: Rupture of rubber, I. Characteristic energy for tearing. J. Polymer Sci. 10, 291–318. (83)Google Scholar
  343. 1952 [19]
    Roberts, J. E.: The pressure distribution in liquids in laminar shearing motion and comparison with predictions from various theories. British Ministry of Supply Report, August. (115, 116)Google Scholar
  344. 1952 [20]
    Truesdell, C.: The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. Anal. 1, 125–300. Corrected reprint, Intl. Sci. Rev. Ser. 554 C. Truesdell and W. NoLL: Non-Linear Field Theories of Mechanics. New York: Gordon and Breach 1965. (4, 5, 19A, 28, 42, 45, 53, 54, 56, 64, 66, 68, 82, 82A, 84, 85, 86, 87, 88, 89, 94, 95, 98, 104, 108, 115, 119, 119A, 120, 121, 125)Google Scholar
  345. 1952 [21]
    Truesdell, C.: Review of Murnaghan [1951, 8]. Bull. Amer. Math. Soc. 58, 577–579. (103)Google Scholar
  346. 1952 [22]
    Truesdell, C.: A program of physical research in classical mechanics. Z. angew. Math. Phys. 11, 79–95. Reprinted along with [1952, 20], Intl. Sci. Rev. Ser. New York: Gordon and Breach. 1965. (28, 108, 119A, 120)Google Scholar
  347. 1952 [23]
    Wang, M. C., and E. Guth: Statistical theory of networks of non-Gaussian flexible chains. J. Chem. Phys. 20, 1144–1157. (95)Google Scholar
  348. 1953 [1]
    Adkins, J. E., A. E. Green, and R. T. Shield: Finite plane strain. Phil. Trans. Roy. Soc. Lond. A 246, 181–213. (57, 59, 60)Google Scholar
  349. 1953 [2]
    Bodaszewski: O niesymetrycznym stanie napieçia i o jego zastosowaniach w mechanice osrodk6w ciaglych. Arch. Mech. Stosow. 5,351–396. (This work is characterized by Kaliski, Plocxocki, and Rogula [1962, 39] as “absolutely incorrect ”.)Google Scholar
  350. 1953 [3]
    Bordoni, P. G.: Sopra le trasformazioni termoelastiche finite di certi solidi omogenei ed isotropi. Rend. Mat. e Applic. (5) 12, 237–266. (94)Google Scholar
  351. 1953 [4]
    Bordoni, P. G.: Deduzione di un’equazione di stato dei solidi dalla teoria delle trasformazioni termoelastiche finite. Rend. Accad. Lincei (8) 14, 784–790. (94)Google Scholar
  352. 1953 [5]
    Bordons, P. G.: Trasformazioni adiabatiche di ampiezza finita. Ricerca Sci. 23, 1569–1578. (94)Google Scholar
  353. 1953 [6]
    Ericksen, J. L.: On the propagation of waves in isotropic incompressible perfectly elastic materials. J. Rational Mech. Anal. 2, 329–337. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (48, 49, 72, 78, 95)Google Scholar
  354. 1953 [7]
    Gilbarg, D., and D. Paolucci: The structure of shock waves in the continuum theory of fluids. J. Rational Mech. Anal. 2, 617–642. (119)Google Scholar
  355. 1953 [8]
    Green, A. E., and E. W. Wilkes: A note on the finite extension and torsion of a circular cylinder of compressible elastic isotropic material. Quart. J. Mech. Appl. Math. 6, 240–249. (66)Google Scholar
  356. 1953 [9]
    Greensmith, H. W., and R. S. Rivlin: The hydrodynamics of non-Newtonian fluids, III. The normal stress effect in high-polymer solutions. Phil. Trans. Roy. Soc. Lond. A 245, 399–429. (115, 116, 119)Google Scholar
  357. 1953 [10]
    Gumbrell, S. M., L. Mullins, and R. S. Rivlin: Departures of the elastic behaviour of rubbers in simple extension from the kinetic theory. Trans. Faraday Soc. 49, 1495–1505.(95)Google Scholar
  358. 1953 [11]
    Hearmon, R. F. S.: “Third-order” elastic constants. Acta Crystal. 6, 331–339. (66)Google Scholar
  359. 1953 [12]
    Hermans, J. J.: Dilute solutions of flexible chain molecules. Flow Properties of Disperse Systems, pp. 199–265. Amsterdam: North Holland Publ. Co. (113)Google Scholar
  360. 1953 [13]
    Hughes, D. S., and J. R. Kelly: Second-order elastic deformation of solids. Phys. Rev. (2) 92, 1145–1149. (66, 76, 77)Google Scholar
  361. 1953 [14]
    Krieger, I. M., and H. Elrod: Direct determination of the flow curves of non-Newtonian fluids, II. Shearing rate in the concentric cylinder viscometer. J. Appl. Phys. 27, 134–136. (113)Google Scholar
  362. 1953 [15]
    Lee, E. H., and I. Kanter: Wave propagation in finite rods of viscoelastic materials. J. Appl. Phys. 24, 1115–1122. (961)Google Scholar
  363. 1953 [16]
    Manacorda, T.: Sul legame sforzi-deformazione nelle trasformazioni finite di un mezzo continuo isotropo. Riv. Mat. Univ. Parma 4, 31–42. (47)Google Scholar
  364. 1953 [17]
    Misicu, M.: Echilibrul mediilor continue cu deformari mari. Stud. Cercet. Mec. Metal. 4, 31–53. (42, 63, 68b)Google Scholar
  365. 1953 [18]
    Mooney, M.: A test of the theory of secondary viscoelastic stress. J. Appl. Phys. 24, 675–678. (119)Google Scholar
  366. 1953 [19]
    Niordsen, F.: Ändliga deformationer inom elasticitetsterion. Inst Hallfasthetslära Kungl. Tekn. Högskolen Stockholm, Publ. nr. 106. (42)Google Scholar
  367. 1953 [20]
    Novozhllov, V. V.: Foundations of the Nonlinear Theory of Elasticity. Translated by F. Bagemihl, H. Komm, and W. Seidel from a Russian book published in 1948. Rochester: Graylock. (42)Google Scholar
  368. 1953 [21]
    Nye, J. F.: Some geometrical relations in dislocated crystals. Acta Metallurg. 1, 153–162. (34)Google Scholar
  369. 1953 [22]
    Pawlowski, J.: Bestimmung des Reibungsgesetzes der nicht-Newtonschen Flüssigkeiten aus den Viskositätsmessungen mit Hilfe eines Rotationsviskosimeters. Kolloid-Z. 130, 129–131. (113)Google Scholar
  370. 1953 [23]
    Reissner, E.: On a variational theorem for finite elastic deformations. J. Math. Phys. 32, 129–135. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (88) List of Works Cited. 555Google Scholar
  371. 1953 [24]
    Rivlin, R. S.: The solution of problems in second order elasticity theory. J. Rational Mech. Anal. 2, 53–81. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (66, 67)Google Scholar
  372. 1953 [25]
    Truesdell, C.: Corrections and additions to “The Mechanical Foundations of Elasticity and Fluid Dynamics”. J. Rational Mech. Anal. 2, 593–616. See [1952, 20]. (4, 5, 19A, 42, 66, 94, 95, 99, 103, 116)Google Scholar
  373. 1954 [1]
    Adkins, J. E.: Some generalizations of the shear problem for isotropic incompressible materials. Proc. Cambridge Phil. Soc. 50, 334–345. (59, 95)Google Scholar
  374. 1954 [2]
    Adkins, J. E., A. E. Green, and G. C. Nicholas: Two-dimensional theory of elasticity for finite deformations. Phil. Trans. Roy. Soc. Lond. A 247, 279–306. (60)Google Scholar
  375. 1954 [3]
    Baker, M., and J. L. Ericksen: Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids. J. Wash. Acad. Sci. 44, 33–35. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (51, 87, 119)Google Scholar
  376. 1954 [3A]
    Braun, I.: The momentum equation of the Reiner liquid. Rend. Circ. Mat. Palermo (2) 2 (1953), 258–265 (1954). (119)Google Scholar
  377. 1954 [4]
    Browder, F. E.: Strongly elliptic systems of differential equations. Contrib. 1h. Partial Diff. Eqns. Annals of Math. Studies No. 33, 15–51. (68)Google Scholar
  378. 1954 [5]
    Ericksen, J. L.: Deformations possible in every isotropic incompressible perfectly elastic body. Z. angew. Math. Phys. 5, 466–486. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (57, 91)Google Scholar
  379. 1954 [6]
    Ericksen, J. L.: Review of Truesdell [1953, 25]. Math. Rev. 15, 178. (103)Google Scholar
  380. 1954 [7]
    Ericksen, J. L., and R. S. Rivun: Large elastic deformations of homogeneous anisotropie materials. J. Rational Mech. Anal. 3, 281–301. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (30, 57, 58)Google Scholar
  381. 1954 [8]
    Green, A. E.: A note on second-order effects in the torsion of incompressible cylinders. Proc. Cambridge Phil. Soc. 50, 488–490. (67) 1954Google Scholar
  382. 1954 [9]
    Green, A. E., and E. B. Spratt: Second-order effects in the deformation of elastic bodies. Proc. Roy. Soc. Lond. A 224, 347–361. (63, 65, 67)Google Scholar
  383. 1954 [10]
    Green, A. E., and E. W. Wilkes: Finite plane strain for orthotropic bodies. J. Rational Mech. Anal. 3, 713–723. (58, 59, 60) 1954Google Scholar
  384. 1954 [11]
    Green, A. E., and W. Zerna: Theoretical Elasticity. Oxford: Clarendon Press. (42, 68, 70, 83, 95) 1954Google Scholar
  385. 1954 [12]
    Kondo, K.: On the theory of the mechanical behavior of microscopically nonuniform materials. Res. Assn. Appl. Geometry (Tokyo), Res. Note No. (2) 4, 36 pp. (34) 1954Google Scholar
  386. 1954 [13]
    Manacorda, T.: Sopra un principio variazionale di E. Reissner per la statica dei mezzi continui. Boll. Un. Mat. Ital. (3) 9, 154–159. (88) 1954Google Scholar
  387. 1954 [14]
    Morrey, C. B. jr.: Second order elliptic systems of differential equations. Contrib. Th. Partial Diff. Eqns. Annals of Math. Studies No. 1954, 101–159. (68)Google Scholar
  388. 1954 [15]
    Padden, F. J., and T. W. Dewitt: Some rheological properties of concentrated polyisobutylene solutions. J. Appl. Phys. 25, 1086–1091. (113, 116, 119) 1954Google Scholar
  389. 1954 [16]
    Pawlowski, J.: Lber eine Erweiterung des Helmholtzschen Prinzips. Kolloid-Z. 138, 6–11. (119) 1954Google Scholar
  390. 1954 [17]
    Pilpel, N.: The viscoelastic properties of aqueous soap gels. Trans. Faraday Soc. 50, 1369–1378. (116) 1954Google Scholar
  391. 1954 [18]
    Reiner, M.: Second order effects in elasticity and hydrodynamics. Bull. Res. Council Israel 3, 372–379. (119) 1954Google Scholar
  392. 1954 [19]
    Rivlin, R. S., and C. Topakoglu: A theorem in the theory of finite elastic deformations. J. Rational Mech. Anal. 3, 581–589. (65) 1954Google Scholar
  393. 1954 [20]
    Roberts, J. E.: Pressure distribution in liquids in laminar shearing motion and comparison with predictions from various theories. Proc. 2nd Internat. Congr. Rheology 1953, pp. 91–98. New York: Academic Press. (115, 116)Google Scholar
  394. 1954 [21]
    Shimazu, Y.: Equation of state of materials composing the earth’s interior. J. Earth Sci. Nagoya Univ. 2, 15–172. (42, 66, 69, 77) 1954Google Scholar
  395. 1954 [22]
    Stoppelli, F.: Una generalizzazione di un teorema di Da Silva. Rend. Acad. Sci. Napoli (4) 21, 214–225. (44) 1954Google Scholar
  396. 1954 [23]
    Stoppelli, F.: Un teorema di esistenza e di unicit¨¤ relativo alle equazioni dell’elastostatica isoterma per deformazioni finite. Ricerche mat. 3, 247–267. (46) 1954Google Scholar
  397. 1954 [24]
    Subba Rao, R., and S. D. Nigam: The effect of cross-viscosity on the performance of full journal bearing without side leakage. Z. angew. Math. Phys. 5, 426–429. (119) 1954Google Scholar
  398. 1954 [25]
    Torre, C.: Kritik and Ergänzung des Maxwellschen Ansatzes für elastisch-zähe Stoffe. Verdrehung von Stäben als Beispiel. Ost. Ing.-Arch. 8, 55–76. (36) 556 C. Truesdell and W. NoLL: Non-Linear Field Theories of Mechanics. 1954Google Scholar
  399. 1954 [26]
    Torre, C.: Ergänzung zum Maxwellschen Ansatz für elastisch-zähe Stoffe. Verdrehung mit instationärer Spannungsänderung als Beispiel. Kolloid-Z. 138, 11–18. (36, 115) 1954Google Scholar
  400. 1954 [27]
    Truesdell, C.: A new chapter in the theory of the elastica. Proc. First Midwest Conf. Solid. Mech 1953, pp. 52–55. (44)Google Scholar
  401. 1955 [1]
    Adkins, J. E.: Finite deformation of materials exhibiting curvilinear aeolotropy. Proc. Roy. Soc. Lond. A 229, 119–134. (34, 58, 59) 1955Google Scholar
  402. 1955 [2]
    Adkins, J. E.: Some general results in the theory of large elastic deformations. Proc. Roy. Soc. Lond. A 231, 75–90. (59) 1955Google Scholar
  403. 1955 [3]
    Adkins, J. E.: A note on the finite plane-strain equations for isotropic incompressible materials. Proc. Cambridge Phil. Soc. 51, 363–367. (60, 95) 1955Google Scholar
  404. 1955 [4]
    Adkins, J. E., and R. S. Rivlin: Large elastic deformations of isotropic materials, X. Reinforcement by inextensible cords. Phil. Trans.. Roy. Soc. Lond. A 248, 201–223. (30, 43) 1955Google Scholar
  405. 1955 [5]
    Bilby, B. A., R. Bullough, and E. Smith: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. Roy. Soc. Lond. A 231, 263–273. (34) 1955Google Scholar
  406. 1955 [6]
    Bilby, B. A.: Types of dislocation sources. Defects in crystalline solids. Report of conf. at Bristol, 1954, pp. 123–133. London: The Physical Society. (34)Google Scholar
  407. 1955 [7]
    Caprioli, L.: Su un criterio per l’esistenza dell’energia di deformazione. Boll. Un. Mat. Ital. (3) 10, 481–483. English translation in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (83)Google Scholar
  408. 1955 [8]
    Cotter, B., and R. S. Rivlin: Tensors associated with time-dependent stress. Quart. Appl. Math. 13, 177–182. (19 A, 36) 1955Google Scholar
  409. 1955 [9]
    Dewitt, T. W.: A rheological equation of state which predicts non-Newtonian viscosity, normal stresses, and dynamic moduli. J. Appl. Phys. 26, 889–894. (113, 115, 119) 1955Google Scholar
  410. 1955 [10]
    Ericksen, J. L.: Eversion of a perfectly elastic spherical shell. Z. angew. Math. Mech. 35, 381–385. (57, 64, 95) 1955Google Scholar
  411. 1955 [11]
    Ericksen, J. L.: Deformations possible in every compressible, isotropic, perfectly elastic material. J. Math. Phys. 34, 126–128. Reprinted in Problems of Nonlinear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (91)Google Scholar
  412. 1955 [12]
    Ericksen, J. L.: A consequence of inequalities proposed by Baker and Erick Sen. J. Wash. Acad. Sci. 45, 268. (119) 1955Google Scholar
  413. 1955 [13]
    Green, A. E.: Finite elastic deformation of compressible isotropic bodies. Proc. Roy. Soc. Lond. A 227, 271–278. (59) 1955Google Scholar
  414. 1955 [14]
    Jain, M. K.: Boundary-layer effects in non-Newtonian fluids. Z. angew. Math. Mech. 35, 12–16. (119) 1955Google Scholar
  415. 1955 [15]
    Jain, M. K.: The motion of an infinite cylinder in rotating non-Newtonian liquid. Z. angew. Math. Mech. 35, 379–381. (119) 1955Google Scholar
  416. 1955 [16]
    Kondo, K., and Collaborators: Memoirs of the Unifying Study of the Basic Problems of Engineering Sciences by Means of Geometry, I. Tokyo: Gakujutsu Bunken Fukyu-Kai. (34) 1955Google Scholar
  417. 1955 [17]
    Kroupa, F.: Plane deformation in the non-linear theory of elasticity. Czechosl. J. Phys. 5, 18–29. (95) 1955Google Scholar
  418. 1955 [18]
    Manacorda, T.: Sulla torsione di un cilindro circolare omogeneo e isotropo nella teoria delle deformazioni finite di solidi elastici incomprimibili. Boll. Un. Mat. Ital. (3) 10, 177–189. (95) 1955Google Scholar
  419. 1955 [19]
    Noll, W.: On the continuity of the solid and fluid states. J. Rational Mech. Anal 4, 3–81. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (19 A, 28, 36, 39, 42, 43,48,84,85,98,99, 100, 108, 111, 113, 119, 126)Google Scholar
  420. 1955 [20]
    Reiner, M.: The complete elasticity law for some metals according to PoYNTING’s observations. Appl. Sci. Res. A 5, 281–295. (59) 1955Google Scholar
  421. 1955 [21]
    Rivlin, R. S.: Further remarks on the stress-deformation relations for isotropic materials. J. Rational Mech. Anal. 4, 681–702. (11, 13) 1955Google Scholar
  422. 1955 [22]
    Rivlin, R. S.: Plane strain of a net formed by inextensible cords. J. Rational Mech. Anal. 4, 951–974. (43) 1955Google Scholar
  423. 1955 [23]
    Rivlin, R. S., and J. L. Ericksen: Stress-deformation relations for isotropic materials. J. Rational Mech. Anal. 4, 323–425. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (11, 12, 13, 19A, 35, 45, 69, 119)Google Scholar
  424. 1955 [24]
    Sheng, P.-L.: Secondary Elasticity. Chin. Assoc. Adv. Sci. (Taipei) Monograph Series 1, I, No. 1. (42, 65, 66, 93) List of Works Cited. 5571955Google Scholar
  425. 1955 [25]
    Signorini, A.: Trasformazioni termoelastiche finite. Memoria 3’, Solidi incomprimibili. Ann. di Mat. Pur. Appl. (4) 39, 147–201. (42, 63, 64, 65, 95) 1955Google Scholar
  426. 1955 [26]
    Stoppelli, F.: Sulla svilluppabilit¨¤ in serie di potenze di un parametro delle soluzioni delle equazioni dell’elastostatica isoterma. Ricerche Mat. 4, 58–73. (46) 1955Google Scholar
  427. 1955 [27]
    Thomas, T. Y.: On the structure of the stress-strain relations. Proc. Nat. Acad. Sci. U.S.A. 41, 716–720. (19A, 99) 1955Google Scholar
  428. 1955 [28]
    Thomas, T. Y.: Combined elastic and Prandtl-Reuss stress-strain relations. Proc. Nat. Acad. Sci. U.S.A. 41, 720–726. (100, 103) 1955Google Scholar
  429. 1955 [29]
    Thomas, T. Y.: Kinematically preferred co-ordinate systems. Proc. Nat. Acad. Sci. U.S.A. 41, 762–770. (19A, 99). 1955Google Scholar
  430. 1955 [30]
    Thomas, T. Y.: Combined elastic and von Mises stress-strain relations. Proc. Nat. Acad. Sci. U.S.A. 41, 908–910. (100) 1955Google Scholar
  431. 1955 [31]
    Truesdell, C.: Hypo-elasticity. J. Rational Mech. Anal. 4, 83–133, 1019–1020. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (99, 100, 103)Google Scholar
  432. 1955 [32]
    Truesdell, C.: The simplest rate theory of pure elasticity. Comm Pure Appl. Math. N.Y.U. 8, 123–132. 1955 Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (28, 99, 103)Google Scholar
  433. 1955 [33]
    Wilkes, E. W.: On the stability of a circular tube under end thrust. Quart. J. Mech. Appl. Math. 8, 88–100. (68b) 1955Google Scholar
  434. 1956 [1]
    Adkins, J. E.: Finite plane deformation of thin elastic sheets reinforced with inextensible cords. Phil. Trans. Roy. Soc. Lond. A 249, 125–150. (43) 1956Google Scholar
  435. 1956 [2]
    Bilby, B. A., and E. Smith: Continuous distributions of Dislocations, III. Proc. Roy. Soc. Lond. A 236, 481–505. (34) 1956Google Scholar
  436. 1956 [3]
    Broer, L. F. J.: On the hydrodynamics of visco-elastic fluids. Appl. Sci. Res. A 6 (1956/57), 226–236. (113, 119)Google Scholar
  437. 1956 [4]
    Budiansky, B., and C. E. Pearson: On variational principles and Galerkin’s procedure for non-linear elasticity. Quart. Appl. Math. 14 (1956/57), 328–331. (88)Google Scholar
  438. 1956 [5]
    Doyle, T. C., and J. L. Ericxsen: Nonlinear elasticity. Adv. Appl. Mech. 4, 53–115. (42) 1956Google Scholar
  439. 1956 [6]
    Ericksen, J. L.: Stress deformation relations for solids. Canad. J. Phys. 34, 226–227. (83) 1956Google Scholar
  440. 1956 [7]
    Ericksen, J. L.: Overdetermination of the speed in rectilinear motion of non-Newtonian fluids. Quart. Appl. Math. 14, 318–321. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (117, 122)Google Scholar
  441. 1956 [8]
    Ericksen, J. L., and R. A. Toupin: Implications Of Hadamard’s condition for elastic stability with respect to uniqueness theorems. Canad. J. Math. 8, 432–436. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York Gordon and Breach 1965. (68b)Google Scholar
  442. 1956 [9]
    Green, A. E.: Hypo-elasticity and plasticity. Proc. Roy. Soc. Lond. A 234, 46–59. (100, 103) 1956Google Scholar
  443. 1956 [10]
    Green, A. E.: Hypo-elasticity and plasticity, II. J. Rational Mech. Anal. 5, 725 734. (100) 1956Google Scholar
  444. 1956 [11]
    Green, A. E.: Simple extension of a hypo-elastic body of grade zero. J. Rational Mech. Anal. 5, 637–642. (103) 1956Google Scholar
  445. 1956 [12]
    Green, A. E., and R. S. Rivlin: The mechanics of non-linear materials with memory. Brown Univ. Report C11–17. (28, 29, 31, 37, 121)Google Scholar
  446. 1956 [13]
    Green, A. E., and R. S. Rivlin: Steady flow of non Newtonian fluids through tubes. Quart Appl. Math. 14, 299–308. (117, 122)Google Scholar
  447. 1956 [14]
    Ikenberry, E., and C. Truesdell: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory, I. J. Rational Mech. Anal. 5, 3¡ª 54. (19A, 125)Google Scholar
  448. 1956 [15]
    Koppe, E.: Methoden der nichtlinearen Elastizitätstheorie mit Anwendung auf die dünne Platte endlicher Durchbiegung. Z. angew. Math. Mech. 36, 455–462. (42)Google Scholar
  449. 1956 [16]
    Lodge, A. S.: A network theory of flow and stress in concentrated polymer solutions. Trans. Faraday Soc. 52, 120–130. (119)Google Scholar
  450. 1956 [17]
    Manacorda, T.: Sul potenziale isotermo nella pi¨´ generale elasticit¨¤ di secondo grado per solidi incomprimibili. Ann. di Mat. (4) 40, 77–86. (94)Google Scholar
  451. 1956 [18]
    Narasimhan, M. H. L.: On the steady laminar flow of certain non-Newtonian liquids through an elastic tube. Proc. Indian Acad. Sci. A 43, 237–246. (119)Google Scholar
  452. 1956 [19]
    Oldroyd, J. G.: Non-Newtonian flow of liquids and solids. Rheology, Theory, and Application 1, Ch. 16. New York: Academic Press. (104)Google Scholar
  453. 1956 [20]
    Philippoff, W.: Flow birefringence and stress. J. Appl. Phys. 27, 984–989. (116)Google Scholar
  454. 1956 [21]
    Pearson, C. E.: General theory of elastic stability. Quart. Appl. Math. 14 (1956/57), 133–144. (68b)Google Scholar
  455. 1956 [22]
    Reiner, M.: Phenomenological Macrorheology. Rheology, Theory and Applications 1, Ch. 2. New York: Academic Press. (104) 1956Google Scholar
  456. 1956 [23]
    Rivlin, R. S.: Stress relaxation in incompressible elastic materials at constant deformation. Quart. Appl. Math. 14, 83–89. (39, 55, 57, 70) 1956Google Scholar
  457. 1956 [24]
    Rivlin, R. S.: Large elastic deformations. Rheology, Theory and Applications 1, Ch. 10. New York: Academic Press. (42) 1956Google Scholar
  458. 1956 [25]
    Rivlin, R. S.: Solution of some problems in the exact theory of visco-elasticity. J. Rational Mech. Anal. 5, 179–188. (111, 112, 113, 115, 119) 1956Google Scholar
  459. 1956 [26]
    Seeger, A.: Neuere mathematische Methoden und physikalische Ergebnisse zur Kristallplastizität. Verformung und Fließen des Festkörpers (Koll. Madrid 1955). Berlin-Göttingen-Heidelberg: Springer. (34)Google Scholar
  460. 1956 [27]
    Srivastava, A. C.: Beltrami motions in non-Newtonian fluids. J. Assoc. Appl. Phys. 3, 69–72. (119) 1956Google Scholar
  461. 1956 [28]
    Theodorides, P.: Mehrparametrige Zähigkeit als Grundlage einer Quasi-Kontinuumstheorie der Kompressionsfront für mehratomige Gase. Z. angew. Math. Mech. Sonderheft, 538–546. (119) 1956Google Scholar
  462. 1956 [29]
    Thomas, T. Y.: Isotropic materials whose deformation and distortion energies are expressible by scalar invariants. Proc. Nat. Acad. Sci. U.S.A. 42, 603–608. (101) 1956Google Scholar
  463. 1956 [30]
    Tiffen, R., and A. C. Stevenson: Elastic isotropy with body force and couple. Quart. J. Mech. Appl. Math. 9, 306–312. (98) 1956Google Scholar
  464. 1956 [31]
    Toupin, R. A.: The elastic dielectric. J. Rational Mech. Anal. 5, 849¡ª 915. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (97) 1956Google Scholar
  465. 1956 [32]
    Truesdell, C.: Das ungelöste Hauptproblem der endlichen Elastizitätstheorie. Z. angew. Math. Mech. 36, 97–103. Russian transi. in Mekhanika 1 (41), 67–74 (1957). English transl. in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (51, 52, 53, 74, 87) 1956Google Scholar
  466. 1956 [33]
    Truesdell, C.: Hypo-elastic shear. J. Appl. Phys. 27, 441–447. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (103)Google Scholar
  467. 1956 [34]
    Truesdell, C.: Experience, theory, and experiment. Proc. 6th Hydraulics Conf. Bull. 36, State Univ. Iowa Studies Engr., 3–18. (119) 1956Google Scholar
  468. 1956 [35]
    Truesdell, C.: On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory, II. J. Rational Mech. Anal 5, 55–128. (119, 119A, 123) 1956Google Scholar
  469. 1956 [36]
    Verma, P. D. S.: Hypo-elastic pure flexure. Proc. Indian Acad. Sci. A 44, 185–192. (103) 1956Google Scholar
  470. 1956 [37]
    Ziegler, H.: On the concept of elastic stability. Adv. Appl. Mech. 4, 351–403. (68 b) 1956Google Scholar
  471. 1957 [1]
    Adkins, J. E., and A. E. Green: Plane problems in second-order elasticity theory. Proc. Roy. Soc. Lond. A 239, 557–576. (60) 1957Google Scholar
  472. 1957 [2]
    Adkins, J. E.: Cylindrically symmetrical deformations of incompressible elastic materials reinforced with inextensible cords. J. Rational Mech. Anal 5, 189¡ª 202. (43) 1957Google Scholar
  473. 1957 [3]
    Barta, J.: On the non-linear elasticity law. Acta Tech. Acad. Sci. Hung. 18, 55–65. (48, 51) 1957Google Scholar
  474. 1957 [4]
    Blackburn, W. S., and A. E. Green: Second-order torsion and bending of isotropic elastic cylinders. Proc. Roy. Soc. Lond. A 240, 408–422. (66) 1957Google Scholar
  475. 1957 [5]
    Brodnyan, J. G., F. H. Gaskins, and W. Philippoff: On normal stresses, flow curves, flow birefringence, and normal stresses of polyisobutylene solutions. Part II. Experimental. J. Soc. Rheol. 1, 109–118. (116) 1957Google Scholar
  476. 1957 [6]
    Chu, Boa-Teh: Thermodynamics of elastic and of some visco-elastic solids and non-linear thermoelasticity. Brown Univ. Div. Eng. Report No. 1, July. (96) 1957Google Scholar
  477. 1957 [7]
    Ericksen, J. L.: Characteristic direction for equations of motion of non-Newtonian fluids. Pac. J. Math. 7, 1557–1562. (119) 1957Google Scholar
  478. 1957 [8]
    Green, A. E., and R. S. Rivlin: The mechanics of non-linear materials with memory, Part. I. Arch. Rational Mech. Anal 1 (1957/58), 1–21, 470. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (28, 29, 31, 37, 121)Google Scholar
  479. 1957 [9]
    Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5, 229–241. (52, 68, 68b, 87) 1957Google Scholar
  480. 1957 [10]
    Jain, M. K.: The stability of certain non-Newtonian liquids contained between two rotating cylinders. J. Sci. Engr. Res. 1, 195–202. (119) 1957Google Scholar
  481. 1957 [11]
    Manacorda, T.: Sul comportamento meccanico di una classe di corpi naturali. Riv. Mat. Univ. Parma 8, 15–25. (41, 43) 1957Google Scholar
  482. 1957 [12]
    Manfredi, B.: Sopra la pia generale equazione reologica di stato per una classe di solidi naturali. Boll. Un. Mat. Ital. (3) 12, 422–435. (28) 1957Google Scholar
  483. 1957 [13]
    Markovitz, H.. Normal stress effect in polyisobutylene solutions, II. Classification of rheological theories. Trans. Soc. Rheol. 1, 37–52. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (108, 113, 115, 116, 119) 1957Google Scholar
  484. 1957 [14]
    Markovitz, H., and R. B. Williamson: Normal stress effect in polyisobutylene solutions, I. Measurements in a cone and plate instrument. Trans. Soc. Rheol 1, 25–36. (115, 116) 1957Google Scholar
  485. 1957 [15]
    Noll, W.: On the foundation of the mechanics of continuous media. Carnegie Inst. Tech. Dept. Math. Rep. No. 17. June. (28, 29, 31) 1957Google Scholar
  486. 1957 [16]
    Pao, Y.-H.: Hydrodynamic theory for the flow of a visco-elastic fluid. J. Appl. Phys. 28, 591–598. (37, 119) 1957Google Scholar
  487. 1957 [17]
    Reichhardt, H.: Vorlesungen über Vektor-und Tensorrechnung. Berlin: VEB Deutscher Verlag der Wissenschaften. (6) 1957Google Scholar
  488. 1957 [18]
    Philippoff, W.: On normal stresses, flow curves, flow birefringence, and normal stresses of polyisobutylene solutions. Part I. Fundamental Principles. Trans. Soc. Rheol. 1, 95–107. (104) 1957Google Scholar
  489. 1957 [19]
    Reiner, M.: A centripetal-pump effect in air. Proc. Roy. Soc. Lond. A 240, 173–188. (116) 1957Google Scholar
  490. 1957 [20]
    Rivlin, R. S.: The relation between the flow of non-Newtonian fluids and turbulent Newtonian fluids. Quart. Appl. Math. 15 (1957/58), 212–215. Correction, Q. Appl. Math. 17 (1959/60), 447 (1960). (122)Google Scholar
  491. 1957 [21]
    Roberts, J. E.: Normal stress effects in tetralin solutions of polyisobutylene. Nature 179, 487–488. (116) 1957Google Scholar
  492. 1957 [22]
    Smith, G. F., and R. S. Rivlin: The anisotropic tensors. Quart. Appl. Math. 15, 308–314. (33) 1957Google Scholar
  493. 1957 [23]
    Smith, G. F., and R. S. Rivlin: Stress-deformation relations for anisotropic solids. Arch. Rational Mech. Anal. 1 (1957/58), 107–112. (33, 50, 127)Google Scholar
  494. 1957 [24]
    Stone, D. E.: On non-existence of rectilinear motion in plastic solids and non-Newtonian fluids. Quart. Appl. Math. 15, 257–262. (117) 1957Google Scholar
  495. 1957 [25]
    Stoppelli, F.: Su un sistema di equazioni integrodifferenziali interessante l’elastostatica. Ricerche Mat. 6, 11–26. (46) 1957Google Scholar
  496. 1957 [26]
    Stoppelli, F.: Sull’esistenza di soluzioni delle equazioni dell’elastostatica isoterma nel caso di sollecitazioni dotate di assi di equilibrio, I. Ricerche Mat. 6, 241–287. (46) 1957Google Scholar
  497. 1957 [27]
    Taylor, G. I., and P. G. Saffman: Effects of compressibility at low Reynolds number. J. Aero. Sci. 24, 553–562. (116) 1957Google Scholar
  498. 1957 [28]
    Theodorides, P. J.: A basic approach to shock front analysis. Univ. Maryland Inst. Fluid Dyn. Appl. Math. Note, January. (119) 1957Google Scholar
  499. 1957 [29]
    Thomas, T. Y.: Deformation energy and the stress-strain relations for isotropic materials. J. Math. and Phys. 35, 335–350. (101) 1957Google Scholar
  500. 1957 [30]
    Truesdell, C.: Sulle basi della termomeccanica. Rend. Accad. Lincei (8) 22, 33–88, 158–166. English transl. in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (130)Google Scholar
  501. 1957 [31]
    Williams, M. C., and R. B. Bird: Steady flow of an Oldroyd visco-elastic fluid in tubes, slits, and narrow annuli. A. I. Ch. E. Journal. 8, 378–382. (119) 1957Google Scholar
  502. 1958 [1]
    Adkins, J. E.: A reciprocal property of the finite plane strain equations. J. Mech. Phys. Solids 6, 267–275. (60, 95) 1958Google Scholar
  503. 1958 [2]
    Adkins, J. E.: Dynamic properties of resilient materials: Constitutive equations. Phil. Trans. Roy. Soc. Lond. A 250, 519–541. (13, 30, 50, 126) 1958Google Scholar
  504. 1958 [3]
    Adkins, J. E.: A three-dimensional problem for highly elastic materials subject to constraints. Quart. J. Mech. Appl. Math. 11, 88–97. (43) 1958Google Scholar
  505. 1958 [4]
    Angles D’auriac, P.: Contribution ¨¤ l’étude de l’élasticité des corps très déformables. Thèse. Univ. Paris = Arch. Mech. Stosow. 13, 775–824 (1961). (42, 54)Google Scholar
  506. 1958 [5]
    Berg, B. A.: Deformational anisotropy [in Russian]. Prikl. mat. Mekh. 22, 67–77. English transl., J. Appl. Math. Mech. 22, 90–103. (69) 1958Google Scholar
  507. 1958 [6]
    Bernstein, B., and J. L. Ericksen: Work functions in hypo-elasticity. Arch. Rational Mech. Anal 1 (1957/58), 396–409. (101)Google Scholar
  508. 1958 [7]
    Bhatnagar, P. L., and S. K. Lakshmana Rao: Problems on the motion of non-Newtonian viscous liquids. Proc. Indian Acad. Sci. A 45, (1957), 161–171. (119)Google Scholar
  509. 1958 [8]
    Bilby, B. A., R. Bullough, L. R. T. Gardner, and E. Smith: Continuous distributions of dislocations, IV. Single glide and plane strain. Proc. Roy. Soc. Lond. A 244, 538–577. (34) 1958Google Scholar
  510. 1958 [9]
    Bilby, B. A., L. R. T. Gardner, and E. Smith: The relation between dislocation density and stress. Acta Metallurg. 6, 29–33. (34) 1958Google Scholar
  511. 1958 [10]
    Bilby, B. A., and L. R. T. Gardner: Continuous distributions of dislocations, V. Twisting under conditions of single glide. Proc. Roy. Soc. Lond. A 247, 52–108. (34) 1958Google Scholar
  512. 1958 [11]
    Blackburn, W. S.: Second-order effects in the torsion and bending of transversely isotropic incompressible elastic beams. Quart. J. Mech. Appl. Math. 11, 142–158. (67) 1958Google Scholar
  513. 1958 [12]
    Caricato, G.: Sulle trasformazioni di un sistema elastico atte a conservare l’isotropia. Rend. Mat. e Applic. (5) 17, 313–318. (50) 1958Google Scholar
  514. 1958 [13]
    CriminaleW. O., jr., J. L. Ericksen, and G. L. Filby, jr.: Steady shear flow of non-Newtonian fluids. Arch. Rational. Mech. Anal. 1 (1957/58), 410–417. (108, 117, 119)Google Scholar
  515. 1958 [14]
    Ericksen, J. L.: Hypo-elastic potentials. Quart. J. Mech. Appl. Math. 11, 67–72. (101) 1958Google Scholar
  516. 1958 [15]
    Ericksen, J. L., and C. Truesdell: Exact theory of stress and strain in rods and shells. Arch. Rational Mech. Anal. 1, 296–323. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (98)Google Scholar
  517. 1958 [16]
    Frank, F. C.: On the theory of liquid crystals. Disc. Faraday Soc. 25, 19–28. (128) 1958Google Scholar
  518. 1958 [17]
    Freudenthal, A. M., and H. Geiringer: The mathematical theories of the inelastic continuum. This Encyclopedia, Vol. VI, pp. 229–433. (103) 1958Google Scholar
  519. 1958 [18]
    Gent, A. N., and A. G. Thomas: Forms for the stored (strain) energy function for vulcanized rubber. J. Polymer Sci. 28, 625–628. (55) 1958Google Scholar
  520. 1958 [19]
    Giesekus, H.: Die rheologische Zustandsgleichung. Rheol. Acta 1 (1958/61), 2–20. (104, 121)Google Scholar
  521. 1958 [20]
    Gold, R. R., and M. Z. v. Krzywoblocki: On superposability and self-superposability conditions for hydrodynamic equations based on continuum, I. J. reine angew. Math. 199, 139–164. (119) 1958Google Scholar
  522. 1958 [21]
    Günther, W.: Zur Statik und Dynamik des Cosseratschen Kontinuums. Abh. Braunschw. Wiss. Ges. 10, 195–213. (34, 44, 98) 1958Google Scholar
  523. 1958 [22]
    Halmos, P. R.: Finite Dimensional Vector Spaces, 2nd ed. Princeton Univ. Press. (6, 33) 1958Google Scholar
  524. 1958 [23]
    Jain, M. K.: The collapse or growth of a spherical bubble or cavity in certain non-Newtonian liquid. Proc. 1st. Congr. Theor. Appl. Mech. (Kharagpur, 1956), pp. 207–212. (119)Google Scholar
  525. 1958 [24]
    Jobling, A., and J. E. Roberts: Goniometry of flow and rupture. Rheology Theory and Applications. New York: Academic Press. 2, 503–535. (116) 1958Google Scholar
  526. 1958 [25]
    John, F.: On finite deformations of elastic isotropic material. inst. Math. Sei. New York Univ. Report IMM-NYU 250. (42, 46, 66) 1958Google Scholar
  527. 1958 [26]
    Jung, H.: Zur Theorie der Maxwellschen Flüssigkeiten. Rheol. Acta 1 (1958/61), 280–285. (119)Google Scholar
  528. 1958 [27]
    Kondo, K., and Collaborators: Memoirs of the Unifying Study of the Basic Problems in Engineering and Physical Sciences by Means of Geometry, II. Tokyo: Gakujutsu Bunken Fukyu-Kai. (34) 1958Google Scholar
  529. 1958 [28]
    Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. BerlinGöttingen-Heidelberg: Springer. (34) 1958Google Scholar
  530. 1958 [29]
    Mithal, K. G.: Motion of a non-Newtonian fluid produced by the uniform rotation of a plate. Ganita 9, 95–117. (119) 1958Google Scholar
  531. 1958 [30]
    Nigam, S. D.: Rotation of an infinite plane lamina in non-Newtonian liquid: Motion started impulsively from rest. Bull. Calcutta Math. Sci. 50, 65–67. (119) 1958Google Scholar
  532. 1958 [31]
    Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2 (1958/59), 197–226. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (15, 19A, 26, 27, 28, 29, 31, 32, 33, 35, 36)Google Scholar
  533. 1958 [32]
    Oldroyd, J. G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc. Lond. A 245, 278–297. (113, 115, 117, 119) 1958Google Scholar
  534. 1958 [33]
    Paria, G.: Love waves in hypoelastic body of grade zero. Quart. J. Mech. Appl. Math. 11, 509–512. (103) 1958Google Scholar
  535. 1958 [34]
    Pipkin, A. C., and R. S. Rivlin: Note on a paper “Further remarks on the stress-deformation relations for isotropic materials.” Arch. Rational Mech. Anal. 1 (1957/58), 469. (11)Google Scholar
  536. 1958 [35]
    Pipkin, A. C., and R. S. Rivlin: The formulation of constitutive equations in continuum physics. Div. Appl. Math. Brown Univ. Report. Sept. (11, 13, 29, 33, 96, 97) 1958Google Scholar
  537. 1958 [36]
    Popper, B., and M. Reiner: Cross-stresses in air. Boundary Layer Research. Berlin-Göttingen-Heidelberg: Springer. (116) 1958Google Scholar
  538. 1958 [37]
    Posey, C. J.: Discussion on open channel flow. Trans. Amer. Soc. Civil Engr. 123, 712–713. (122) 1958Google Scholar
  539. 1958 [38]
    Reiner, M.: The centripetal-pump effect in a vacuum pump. Proc. Roy. Soc. Lond. A 247, 152–167. (116) 1958Google Scholar
  540. 1958 [39]
    Reiner, M.: Rheology. This Encyclopedia, Vol. VI, pp. 434–550. (104) 1958Google Scholar
  541. 1958 [40]
    Rice, M. H., R. G. Mcqueen, and J. M. Walsh: Compression of solids by strong shock waves. Solid State Physics 6, 1–63. (71) 1958Google Scholar
  542. 1958 [41]
    Sakadi, Z.: Stationary motion of viscous fluid around a rotating solid sphere. Mem. Fac. Eng. Nagoya 10, 42–45. (119) 1958Google Scholar
  543. 1958 [42]
    Sharma, S. K.: Propagation of sound waves in visco-elastic compressible fluids. J. Sci. Engr. Res. 2, 253–258. (119) 1958Google Scholar
  544. 1958 [43]
    Signorini, A.: Estensione delle formole di Almansi a sistemi elastici anisotropi. Rend. Accad. Lincei (8) 25, 246–253. (86) 1958Google Scholar
  545. 1958 [44]
    Smith, G. F., and R. S. Rivlin: The strain-energy function for anisotropie elastic materials. Trans. Amer. Math. Soc. 88, 175–193. (85) 1958Google Scholar
  546. 1958 [45]
    Stoppelli, F.: Sull’esistenza di soluzioni delle equazioni dell’elastostatica isoterma nel caso di sollecitazioni dotate di assi di equilibrio, II, III. Ricerche Mat. 7, 71–101, 138–152. (46) 1958Google Scholar
  547. 1958 [46]
    Srivastava, A. C.: The flow of a non-Newtonian liquid near a stagnation point. Z. angew. Math. Phys. 9, 80–84. (119) 1958Google Scholar
  548. 1958 [47]
    Srivastava, A. C.: Rotation of a plane lamina in non-Newtonian fluids. Bull. Calcutta Math. Soc. 50, 57–64. (119) 1958Google Scholar
  549. 1958 [48]
    Theodorides, P.: Parallel effects of bulk viscosity and time lag in kinetics of non-monatomic fluids. Z. angew. Math. Phys. 96, 668–686. (119) 1958Google Scholar
  550. 1958 [49]
    Treloar, L. R. G.: The Physics of Rubber Elasticity. 2nd ed. Oxford Univ. Press. (95) 1958Google Scholar
  551. 1958 [50]
    Verma, P. D. S.: Deformation energy for hypoelastic materials of grade zero. J. Sci. Engr. Res. 2, 251–252. (101) 1958Google Scholar
  552. 1958 [51]
    Verma, P. D. S.: Steady flow of linear fluent material past a fixed sphere. J. Assoc. Appl. Physicists 5, 6–9. (119) 1958Google Scholar
  553. 1959 [1]
    Capriz, G.: Sui casi di “incompatibilit¨¤” tra l’elastostatica classica e la teoria delle deformazioni elastiche finite. Riv. Mat. Univ. Parma 10, 119–129. (64) 1959Google Scholar
  554. 1959 [2]
    Coleman, B. D., and W. Noll: On certain steady flows of general fluids. Arch. Rational Mech. Anal. 3, 289–303. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (107, 108, 111, 113, 115)Google Scholar
  555. 1959 [3]
    Coleman, B. D., and W. Noll: On the thermostatics of continuous media. Arch. Rational Mech. Anal. 4, 97–128. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (51, 52, 81, 87, 89)Google Scholar
  556. 1959 [4]
    Coleman, B. D., and W. Noll: Helical flow of general fluids. J. Appl. Phys. 30, 1508–1512. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (107, 108, 112, 119)Google Scholar
  557. 1959 [5]
    Dana, J. S.: Dana’s manual of mineralogy, 17th ed., revised by C. S. HURLBUT, jr. New York: John Wiley. (33) 1959Google Scholar
  558. 1959 [6]
    Dewey, J.: Strong shocks and stress-strain relations in solids. Aberdeen Proving Ground Ballistic Res. Lab. Rep. No. 1074. (71) 1959Google Scholar
  559. 1959 [7]
    Ericksen, J. L.: Secondary flow phenomena in non-linear fluids. Tappi 42, 773–775. (108, 114) 1959Google Scholar
  560. 1959 [8]
    Genensky, S. M., and R. S. Rivlin: Infinitesimal plane strain in a network of elastic cords. Arch. Rational Mech. Anal. 4, 30–44. (43) 1959Google Scholar
  561. 1959 [9]
    Gold, R. R., and M. Z. v. Krzywoblocki: On superposability and self-superposability conditions for hydrodynamic equations based on continuum, II. J. reine angew. Math. 200, 140–169. (119) 1959Google Scholar
  562. 1959 [10]
    Green, A. E., R. S. Rivlin, and A. J. M. Spencer: The mechanics of non-linear materials with memory, Part II. Arch. Rational Mech. Anal. 3, 82–90. (28, 37) 1959Google Scholar
  563. 1959 [11]
    Green, A. E., and A. J. M. Spencer: The stability of a circular cylinder under finite extension and torsion. J. Math. Phys. 37, 316–338. (68b) 1959Google Scholar
  564. 1959 [12]
    Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. Phys. Solids 7, 209–225. (100, 101) 1959Google Scholar
  565. 1959 [13]
    Jain, M. K.: Problems of cross-elasticity Proc. 2nd. Congr. Theor. Appl. Mech. (New Delhi, 1956), pp. 81–86. (74)Google Scholar
  566. 1959 [14]
    Jobling, A., and J. E. Roberts: Flow testing of viscoelastic materials. Design and calibration of the Roberts-Weissenberg model R8 rheogoniometer. J. Polymer Sci. 36, 421–431. (116) 1959Google Scholar
  567. 1959 [15]
    Jobling, A., and J. E. Roberts: An investigation, with the Weissenberg rheogoniometer, of the stress distribution in flowing polyisobutylene solutions at various concentrations and molecular weights. J. Polymer Sci. 36, 433–441. (116) 1959Google Scholar
  568. 1959 [16]
    Kotaka, T.: Note on the normal stress effect in the solution of rodlike macromolecules. J. Chem. Phys. 30, 1566–1567. (119) 1959Google Scholar
  569. 1959 [17]
    Kröner, E., u. A. Seeger: Nicht-lineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Arch. Rational Mech. Anal. 3, 97–119. (34, 94) 1959Google Scholar
  570. 1959 [18]
    Langlois, W. E., and R. S. Rivlin: Steady flow of slightly visco-elastic fluids. Brown Univ. D.A.M. Tech. Rep. No. 3,. December. (11,5, 121, 122) 1959Google Scholar
  571. 1959 [19]
    Manacorda, T.: Sulla propagazione di onde ordinarie di discontinuit¨¤ nella elasticit¨¤ di secondo grado per solidi incompribili. Riv. Mat. Univ. Parma 10, 19–33. (74, 78, 95) 1959Google Scholar
  572. 1959 [20]
    Oldroyd, J. G.: Complicated rheological properties. Rheology of Disperse Systems, pp. 1–15. New York, etc.: Pergamon. (104) 1959Google Scholar
  573. 1959 [21]
    Pipkin, A. C., and R. S. Rivlin: The formulation of constitutive equations in continuum physics, I. Arch. Rational Mech. Anal. 4 (1959/60), 129–144. (11, 13, 29, 33)Google Scholar
  574. 1959 [22]
    Reiner, M.: The physics of air viscosity as related to gas-bearing design. First Intl. Sympos. Gas-Lub. Bearings, Off. Naval Res., Washington. (116) 1959Google Scholar
  575. 1959 [23]
    Rivlix, R. S.: The constitutive equations for certain classes of deformations. Arch. Rational. Mech. Anal 3, 304–311. (39) 1959Google Scholar
  576. 1959 [24]
    Rivlin, R. S.: The deformation of a membrane formed by inextensible cords. Arch. Rational Mech. Anal. 2 (1958/59), 447–476. (43)Google Scholar
  577. 1959 [25]
    Rivlin, R. S.: Mathematics and rheology, the 1958 Bingham Medal Address. Physics Today 12, 32–34, 36. (94)Google Scholar
  578. 1959 [26]
    Seeger, A., u. E. Mann: Anwendung der nicht-linearen Elastizitätstheorie auf Fehlstellen in Kristallen. Z. Naturforsch. 14a, 154–164. (94) 1959Google Scholar
  579. 1959 [27]
    Serrin, J.: Mathematical principles of classical fluid mechanics. This Encyclopedia, Vol. VIII, Part I, pp. 125–263. (12, 28, 96t) 1959Google Scholar
  580. 1959 [28]
    Serrin, J.: The derivation of stress-deformation relations for a Stokesian fluid. J. Math. Mech. 8, 459–470. (12) 1959Google Scholar
  581. 1959 [29]
    Serrin, J.: Poiseuille and Couette flow of non-Newtonian fluids. Z. angew. Math. Mech. 39, 295–299. (114) 1959Google Scholar
  582. 1959 [30]
    Sharma, S. K.: Rotation of a plane lamina in a visco-elastic Liquid. Appl. Sci. Res. A 9 (1959/60), 43–52. (119)Google Scholar
  583. 1959 [31]
    Sharma, S. K.: Visco-elastic steady flow. Z. angew. Math. Mech. 39, 313–322. (119) 1959Google Scholar
  584. 1959 [32]
    Sharma, S. K.: Flow of a visco-elastic liquid near a stagnation point. J. Phys. Soc. Japan 14, 1421–1425. (119) 1959Google Scholar
  585. 1959 [33]
    Spencer, A. J. M., and R. S. Rivlin: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Rational Mech. Anal. 2 (1958/59), 309–336. (11, 13)Google Scholar
  586. 1959 [34]
    Spencer, A. J. M., and R. S. Rivlin: Finite integrity bases for five or fewer symmetric 3 x 3 matrices. Arch. Rational Mech. Anal. 2 (1958/59), 435–446. (11)Google Scholar
  587. 1959 [35]
    Spencer, A. J. M.: On finite elastic deformations with a perturbed strain-energy function. Quart. J. Mech. Appl. Math. 12, 129–145. (69) 1959Google Scholar
  588. 1959 [36]
    Srivastava, A. C.: Superposition in non-Newtonian fluids. Proc. 2nd Congr. Theor. Appl. Mech. (New Delhi, 1956), pp. 187–194. (119)Google Scholar
  589. 1959 [37]
    Truesdell, C.: The rational mechanics of materials ¡ª past, present, future. Applied Mech. Rev. 12, 75–80. Corrected reprint, Applied Mechanics Surveys. Washington: Spartan Books. 1965. (65, 96)Google Scholar
  590. 1959 [38]
    Urbanowski, W.: Small deformations superposed on finite deformations of a curvilinearly orthotropic body. Arch. Mech. Stosow. 11, 223–241. (58, 69) 1959Google Scholar
  591. 1959 [39]
    Verma, P. D. S.: Hypo-elastic strain in rotating shafts and spherical shells. Proc. 2nd Congr. Theor. Appl. Mech. (New Delhi, 1956), pp. 99–110. (103)Google Scholar
  592. 1959 [40]
    Yamamoto, M.: Phenomenological theory of visco-elasticity of three dimensional bodies. J. Phys. Soc. Japan 14, 313–330. (35, 36) 1959Google Scholar
  593. 1959 [41]
    Zahorski, S.: A form of the elastic potential for rubber-like materials. Arch. Mech. Stosow. 11, 613–618. (95) 1959Google Scholar
  594. 1960 [1]
    Adams, N.: Measurements of pressure gradients in cone-and-plate and in parallel plate viscometers. Rheol. Abstr. 3, No. 3, 28–30. (115) 1960Google Scholar
  595. 1960 [2]
    Adkins, J. E.: Symmetry relations for orthotropic and transversely isotropic materials. Arch. Rational Mech. Anal. 4, 193–213. (11, 13, 50) 1960Google Scholar
  596. 1960 [3]
    Adkins, J. E.: Further symmetry relations for transversely isotropic materials. Arch. Rational Mech. Anal. 5, 263–274. (11, 13, 50, 126) 1960Google Scholar
  597. 1960 [4]
    Aero, E. L., and E. V. Kuvshinskii: Fundamental equations of the theory of elastic media with rotationally interacting particles [in Russian]. Fizika Tverdogo Tela 2, 1399–1409. English Transl. Soviet Physics Solid State 2, 1272–1821 (1961). (98)Google Scholar
  598. 1960 [5]
    Barenblatt, G. I., In. P. Zheltov, and I. N. Kochina: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). PMM 24, 1286–1303 (Transi of Priklad. Mat. Mekh. 24, 852–864). (23) 1960Google Scholar
  599. 1960 [6]
    Bergen, J. T.: Stress relaxation of polymeric materials in combined torsion and tension. Visco-elasticity: Phenomenological Aspects, pp. 108–132. New York: Academic Press. (39) 1960Google Scholar
  600. 1960 [7]
    Bergen, J. T., D. C. Messersmith, and R. S. Rivlin: Stress relaxation for biaxial deformation of filled high polymers. J. Appl. Polymer Sci. 3, 153–167. (39, 70) 1960Google Scholar
  601. 1960 [8]
    Bernstein, B.: Hypo-elasticity and elasticity. Arch. Rational Mech. Anal. 6, 89–104. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (99, 100, 101)Google Scholar
  602. 1960 [9]
    Bhagavantam, S.: Third order elasticity. Proc. 3rd Congr. Theor. Appl. Mech. (Bangalore, 1957), pp. 25–30. (66)Google Scholar
  603. 1960 [10]
    Bhagavantam, S., and E. V. Chelam: Elastic behavior of matter under very high pressures. Uniform compression. Proc. Indian Acad. Sci. 52, 1–19. (69) 1960Google Scholar
  604. 1960 [11]
    Bhagavantam, S., and E. V. Chelam: Elastic behavior of matter under very high pressures. General deformation. J. Indian Inst. Sci. 42, 29–40. (69) 1960Google Scholar
  605. 1960 [12]
    Bhatnagar, P. L., and S. K. Lakshmana Rao: Steady motion of non-Newtonian fluids in tubes. Proc. 3rd. Congr. Theor. Appl. Mech. (Bangalore, 1957), pp. 225–234. (117, 119)Google Scholar
  606. 1960 [13]
    Bilby, B. A.: Continuous distributions of dislocations. Progress in Solid Mechanics 1, 329–398. (34) 1960Google Scholar
  607. 1960 [14]
    Bird, R. B.: New variational principle for incompressible non-Newtonian flow. Phys. Fluids 3, 539–541. Comment, ibid. 5, 502 (1962). (119)Google Scholar
  608. 1960 [15]
    Chelam, E. V.: Elastic behavior of matter under high pressures. Simple shear. J. Indian Inst. Sci. 42, 41–46. (69) 1960Google Scholar
  609. 1960 [16]
    Chelam, E. V.: Elastic behavior of matter under very high pressures. Considerations of stability. J. Indian Inst. Sci. 42, 101–107. (68b) 1960Google Scholar
  610. 1960 [17]
    Coleman, B. D., and W. Noll: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rational Mech. Anal. 6, 355–370. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (38, 40, 121, 123)Google Scholar
  611. 1960 [18]
    Ericksen, J. L.: Anisotropic fluids. Arch. Rational Mech. Anal. 4 (1959/60), 231–237. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (98, 127)Google Scholar
  612. 1960 [19]
    Ericksen, J. L.: Transversely isotropic fluids. Kolloid-Z. 173, 117–122. (127, 129) 1960Google Scholar
  613. 1960 [20]
    Ericksen, J. L.: Theory of anisotropic fluids. Trans. Soc. Rheol. 4, 29–39. (98, 127, 129) 1960Google Scholar
  614. 1960 [21]
    Ericksen, J. L.: A vorticity effect in anisotropic fluids. J. Polymer Sci. 47, 327–331. (129) 1960Google Scholar
  615. 1960 [22]
    Ericksen, J. L.: The behavior of certain visco-elastic materials in laminar shearing motions. Visco-elasticity: Phenomenological Aspects, pp. 77–91. New York Academic Press. (108, 115, 119) 1960Google Scholar
  616. 1960 [23]
    Foux, A., and M. Reiner: Extension of metal wires in simple torsion. Technical Rep. Technion Res. Devel. Found. (54, 66) 1960Google Scholar
  617. 1960 [24]
    Fredrickson, A. G.: Helical flow of an annular mass of visco-elastic fluid. Chem. Engr. Sci. 11, 252–259. (112) 1960Google Scholar
  618. 1960 [25]
    Genensky, S. M.: A general theorem concerning the stability of a particular non-Newtonian fluid. Quart. Appl. Math. 18 (1960/61), 245–250. (123)Google Scholar
  619. 1960 [26]
    Green, A. E., and J. E. Adkins: Large Elastic Deformations and Non-linear Continuum Mechanics. Oxford: Clarendon Press. (13, 30, 34, 42, 43, 54, 55, 57, 58, 59, 60, 66, 68b, 85, 96) 1960Google Scholar
  620. 1960 [27]
    Green, A. E., and R. S. Rivlin: The mechanics of non-linear materials with memory. Part III. Arch. Rational Mech. Anal. 4 (1959/60), 387–404. (28, 37)Google Scholar
  621. 1960 [28]
    Grioli, G.: Elasticit¨¤ asimmetrica. Annali di Mat. Pura Appl. (4) 50, 389–417. Summary, Proc. 10th Intl. Congr. Appl. Mech. Stresa 1960, pp. 252–254 (1962). (98)Google Scholar
  622. 1960 [29]
    Jain, M. K.: On rotational instability in visco-elastic liquids. Proc. 3rd. Congr. Theor. Appl. Mech. (Bangalore, 1957), pp. 217–224. (113) 1960Google Scholar
  623. 1960 [30]
    John, F.: Plane strain problems for a perfectly elastic material of harmonic type. Communs. Pure Appl. Math. 13, 239–296. (94) 1960Google Scholar
  624. 1960 [31]
    Johnson, M. W.: Some variational theorems for non-Newtonian flow. Phys. Fluids 3, 871–878. (119) 1960Google Scholar
  625. 1960 [32]
    Jones, J. R.: Flow of a non-Newtonian fluid in a curved pipe. Quart. J. Mech. Appl. Math. 13, 428–443. (119) 1960Google Scholar
  626. 1960 [33]
    Kapur, J. N.: Some problems in hydrodynamics of non-Newtonian viscous liquids with variable coefficient of cross-viscosity. Proc. Natl. Inst. Sci. India A 25, (1959), 231–235. (119)Google Scholar
  627. 1960 [34]
    Knowles, J. A.: Large amplitude oscillations of a tube of incompressible elastic material. Quart. Appl. Math. 18, 71–77. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (62, 95)Google Scholar
  628. 1960 [35]
    Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rational Mech. Anal. 4, (1959/60), 273–334. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (34, 94, 98)Google Scholar
  629. 1960 [36]
    Lodge, A. S.: On the methods of measuring normal stress differences in shear flow. Rheol. Abstr. 3, No. 3, 21–23. (104) 1960Google Scholar
  630. 1960 [37]
    Mithal, K. G.: Problems related to non-Newtonian fluids. Thesis. Lucknow Univ. (119) 1960Google Scholar
  631. 1960 [38]
    Narasimhan, M. N. L.: Mechanics of flow of real fluids through flexible tubes. J. Sci. Engr. Res. 4, 91–104. (113, 119) 1960Google Scholar
  632. 1960 [39]
    Oberoi, M. M., and J. N. Kapur: On axially-symmetric non-Newtonian flows. Bull. Calcutta Math. Soc. 52, 165–172. (119) 1960Google Scholar
  633. 1960 [40]
    Pfleiderer, H., A. Seeger, u. E. Kröner: Nichtlineare Elastizitätstheorie geradliniger Versetzungen. Z. Naturforsch. 15a, 758–772. (94) 1960Google Scholar
  634. 1960 [41]
    Pipkin, A. C., and R. S. Rivlin: Electrical conduction in deformed isotropic materials. J. Math. Phys. 1, 127–130. (97) 1960Google Scholar
  635. 1960 [42]
    Rajagopal, E. S.: The existence of interfacial couples in infinitesimal elasticity. Ann. Physik (7) 6, 192–201. (98) 1960Google Scholar
  636. 1960 [43]
    Rathna, S. L.: Superposability of steady axi-symmetrical flows in a non-Newtonian fluid. Proc. Indian Acad. Sci. A 51, 155–163. (119) 1960Google Scholar
  637. 1960 [44]
    Rathna, S. L.: Couette and Poiseuille flow in non-Newtonian fluids. Proc. Nat. Inst. Sci. India A 26, 392–399. (119) 1960Google Scholar
  638. 1960 [45]
    Reiner, M.: Cross stresses in the laminar flow of liquids. Phys. Fluids 3, 427–432. (116) 1960Google Scholar
  639. 1960 [46]
    Rivlin, R. S.: The formulation of constitutive equations in continuum physics, II. Arch. Rational Mech. Anal. 4 (1959/60), 262–272. (13, 29, 33)Google Scholar
  640. 1960 [47]
    Rivlin, R. S.: Constitutive equations for classes of deformations. Viscoelasticity: Phenomenological Aspects, pp. 93–108. New York: Academic Press. (39) 1960Google Scholar
  641. 1960 [48]
    Rivlin, R. S.: Some topics in finite elasticity. Structural Mechanics, pp. 169–198. Oxford etc: Pergamon. (42) 1960Google Scholar
  642. 1960 [49]
    Seeger, A., u. O. Buck: Die experimentelle Ermittlung der elastischen Konstanten höherer Ordnung. Z. Naturforsch. 15a, 1056–1067. (66) 1960Google Scholar
  643. 1960 [50]
    Sirotin, Yu. I.: Anisotropie tensors [in Russian]. Dokl. Akad. Nauk SSSR 133, 321–324. English Transl., Soviet Phys. Doklady 5, 774–777 (1961). (33)Google Scholar
  644. 1960 [51]
    Sirotin, Yu. I.: The construction of tensors with specified symmetry [in Russian]. Kristallografia 5, 171–179. English Transl., Soviet Phys. Cryst. 5, 157–165. (33) 1960Google Scholar
  645. 1960 [52]
    Smith, G. F.: On the minimality of integrity bases for symmetric 3 X 3 matrices. Arch. Rational Mech. Anal. 5, 382–389. (11) 1960Google Scholar
  646. 1960 [53]
    Spencer, A. J. M., and R. S. Rivlin: Further results on the theory of matrix polynomials. Arch. Rational Mech. Anal. 4 (1959/60), 214–230. (11, 13, 37)Google Scholar
  647. 1960 [54]
    Srivastava, A. C.: Rotatory oscillation of an infinite plate in non-Newtonian fluids. Appl. Sci. Res. A 9 (1959/60), 369–373. (119) 1960Google Scholar
  648. 1960 [55]
    Toupin, R. A.: Stress tensors in elastic dielectrics. Arch. Rational Mech. Anal. 5, 440–452. (97) 1960Google Scholar
  649. 1960 [56]
    Toupin, R. A., and R. S. Rivlin: Dimensional changes in crystals caused by dislocations. J. Mathematical Phys. 1, 8–15. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (63, 68, 93)Google Scholar
  650. 1960 [57]
    Truesdell, C.: The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788. L. Euleri Opera Omnia (2) 112. Zürich: Füssli. (66) 1960Google Scholar
  651. 1960 [58]
    Truesdell, C.: Modern theories of materials. Trans. Soc. Rheol. 4, 9–22. (4, 96) 1960Google Scholar
  652. 1960 [59]
    Walters, K.: The motion of an elastico-viscous liquid contained between concentric spheres. Quart. J. Mech. Appl. Math. 13, 325–333. (119) 1960Google Scholar
  653. 1960 [60]
    Walters, K.: The motion of an elastico-viscous liquid contained between coaxial cylinders (II). Quart. J. Mech. Appl. Math. 13, 444–461. (119) 1960Google Scholar
  654. 1961 [1]
    Adkins, J. E., and A. E. Green: The finite flexure of an aeolotropic elastic cuboid. Arch. Rational Mech. Anal. 8, 9–14. (58, 59) 1961Google Scholar
  655. 1961 [2]
    Adkins, J. E.: Large elastic deformation. Progress in Solid Mech. 2, 2–60. (43) 1961Google Scholar
  656. 1961 [3]
    Bernstein, B.: Remarks on the materials of the rate type and the principle of determinism Trans. Soc. Rheol. 5, 35–40. (37, 99) 1961Google Scholar
  657. 1961 [4]
    Bhatnagar, P. L.: On two-dimensional boundary layer in non-Newtonian fluids with constant coefficients of viscosity and cross-viscosity. Proc. Indian Acad. Sci. 53, 95–97. (119) 1961Google Scholar
  658. 1961 [5]
    Coleman, B. D., and W. Noll: Recent results in the continuum theory of viscoelastic fluids. Ann. N.Y. Acad. Sci. 89, 672–714. (38, 104, 106, 108, 111, 113, 121) 1961Google Scholar
  659. 1961 [6]
    Coleman, B. D., and W. Noll: Normal stresses in second-order viscoelasticity. Trans. Soc. Rheol. 5, 41–46. (121) 1961Google Scholar
  660. 1961 [7]
    Coleman, B. D., and W. Nola,: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33, 239–249. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (3, 38, 41) 1961Google Scholar
  661. 1961 [8]
    Corneliussen, A. H., and R. T. Shield: Finite deformation of elastic membranes with application to the stability of an inflated and extended tube. Arch. Rational Mech. Anal. 7, 273–304. (60) 1961Google Scholar
  662. 1961 [9]
    Dahler, J. S., and L. E. Scriven: Angular momentum of continua. Nature, Lond. 192, 36–37. (98) 1961Google Scholar
  663. 1961 [10]
    Datta, S. K.: On the steady motion of an idealized elastico-viscous liquid through channels with suction and injection. J. Phys. Soc. Japan 16, 794–797. (119) 1961Google Scholar
  664. 1961 [11]
    Datta, S. K.: Laminar flow of non-Newtonian fluid in channels with porous walls. Bull. Calcutta Math. Soc. 53, 111–116. (119) 1961Google Scholar
  665. 1961 [12]
    England, A. H., and A. E. Green: Steady-state thermoelasticity for initially stressed bodies. Phil. Trans. Roy. Soc. Lond. A 253, 517–542. (96) 1961Google Scholar
  666. 1961 [13]
    Ericksen, J. L.: Poiseuille flow of certain anisotropic fluids. Arch. Rational. Mech. Anal. 8, 1–8. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (129) 1961Google Scholar
  667. 1961 [14]
    Ericksen, J. L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–24. Reprinted in Rational Mechanics of Materials. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (98, 127, 128)Google Scholar
  668. 1961 [15]
    Eringen, A. C.: On the foundations of electro-elastostatics. Contract Nonr.1100 (02) Tech. Rep. No. 19, Purdue Univ., November. 65 pp. (97) 1961Google Scholar
  669. 1961 [16]
    Flavin, J. N., and A. E. Green: Plane thermoelastic waves in an initially stressed medium. J. Mech. Phys. Solids 9, 179–190. (96) 1961Google Scholar
  670. 1961 [17]
    Giesekus, H.: Der Spannungstensor des visko-elastischen Körpers. Rheol. Acta 1 (1958/61), 395–403. (104)Google Scholar
  671. 1961 [18]
    Giesekus, H.: Einige Bemerkungen zum Fließverhalten elasto-viskoser Flüssigkeiten in stationären Schichtströmungen. Rheol. Acta 1 (1958/61), 404–413. (104, 108, 119) 1961Google Scholar
  672. 1961 [19]
    Graebel, W. P.: Stability of a Stokesian fluid in Couette flow. Phys. Fluids 4, 362–368. (119) 1961Google Scholar
  673. 1961 [20]
    Green, A. E.: Torsional vibrations of an initially stressed circular cylinder. Problems of Contin. Mech. (Muskhelisvili Anniv. Vol.), pp. 148–154. Phila.: S.I.A.M. (Russian Ed., pp. 128–134.) (70) 1961Google Scholar
  674. 1961 [21]
    Grioli, G.: Onde di discontinuit¨¤ ed elasticit¨¤ asimmetrica. Rend. Accad. Lincei (8) 29, (1960), 309–312. (98) 1961Google Scholar
  675. 1961 [22]
    Grossman, P. U. A.: Weissenberg’s rheological equation of state. Kolloid-Z. 174, 97–109. (94, 119) 1961Google Scholar
  676. 1961 [23]
    Hand, G. C.: A theory of dilute suspensions. Arch. Rational Mech. Anal. 7, 81–86. (127) 1961Google Scholar
  677. 1961 [24]
    Hayes, M., and R. S. Rivlin: Propagation of a plane wave in an isotropic elastic material subject to pure homogeneous deformation. Arch. Rational Mech. Anal. 8, 15–22. (52, 73, 74) 1961Google Scholar
  678. 1961 [25]
    Haves, M., and R. S. Rivlin: Surface waves in deformed elastic materials. Arch. Rational Mech. Anal. 8, 358–380. (73, 95) 1961Google Scholar
  679. 1961 [26]
    Hill, R.: Uniqueness in general boundary-value problems for elastic or inelastic solids. J. Mech. Phys. Solids 9, 114–130. (101) 1961Google Scholar
  680. 1961 [27]
    Hill, R.: Bifurcation and uniqueness in non-linear mechanics of continua. Problems Contin. Mech. (Muskhelisvili Anniv. Vol.), pp. 155–164. Phila S.I.A.M. (101) 1961Google Scholar
  681. 1961 [28]
    Jain, M. K.: The flow of a non-Newtonian liquid near a rotating disk. Appl. Sci. Res. A 10, 410–418. (119) 1961Google Scholar
  682. 1961 [29]
    Jain, M. K.: Flow of non-Newtonian liquid near a stagnation point with and without suction. J. Sci. Engr. Res. 5, 81–90. (119) 1961Google Scholar
  683. 1961 [30]
    Jain, M. K., and M. Balram: Problems of cross-viscosity with large suction. J. Sci. Engr. Res. 5, 259–270. (119) 1961Google Scholar
  684. 1961 [31]
    Johnson, M. W., jr.: On variational principles for non-Newtonian fluids. Trans. Soc. Rheol. 5, 9–21. (119) 1961Google Scholar
  685. 1961 [32]
    Kapur, J. N., and S. Goel: Flow of visco-elastic liquids in tubes. Bull. Calcutta Math. Sci. 53, 1–6. (117) 1961Google Scholar
  686. 1961 [33]
    Krishnan, R. S., and E. S. Rajagopal: The atomistic and the continuum theories of crystal elasticity. Ann. Physik (7) 8, 121–136. (98) 1961Google Scholar
  687. 1961 [34]
    Kröner, E.: Bemerkung zum geometrischen Grundgesetz der allgemeinen Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rational Mech. Anal 7, 78–80. Reprinted in Foundations of Elasticity Theory. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (34)Google Scholar
  688. 1961 [35]
    Leslie, F. M.: The slow flow of a viscoelastic liquid past a sphere, with an appendix by R. I. Tanner. Quart. J. Mech. Appl. Math. 14, 36–48. (119) 1961Google Scholar
  689. 1961 [36]
    Lodge, A. S.: A new cone-and-plate and parallel plate apparatus for the determination of normal stress differences in steady shear flow. Rheol. Abstr. 4, No. 3, 29. (119) 1961Google Scholar
  690. 1961 [37]
    Metzner, A. B., W. T. Houghton, R. A. Sailor, and J. L. White: A method for the measurement of normal stresses in simple shearing flow. Rheol. 5, 133–147. (114) 1961Google Scholar
  691. 1961 [38]
    Mithal, K. G.: On the effects of uniform high suction on the steady flow of a non-Newtonian liquid due to a rotating disk. Quart. J. Mech. Appl. Math. 14, 403–410. (119) 1961Google Scholar
  692. 1961 [39]
    Narasimhan, M N L Laminar non-Newtonian flow in an annulus with porous walls. Z. angew. Math. Mech. 41, 44–54. (119) 1961Google Scholar
  693. 1961 [40]
    Narasimhan, M. N. L.: Laminar non-Newtonian flow in a porous pipe. Appl. Sci. Res. A 10, 393–409. (119) 1961Google Scholar
  694. 1961 [41]
    Nariboli, G. A.: A note on the fracture of a hypo-elastic bar. Proc. Fifth Congr. Theor. Appl. Mech. (Roorkee, 1959), c. 55–60. (103) 1961Google Scholar
  695. 1961 [42]
    NovozusLov, V. V.: Theory of Elasticity (Transl. from a Russian work publ. in 1958). Jerusalem: Israel Progr. Sci. Transl. (42) 1961Google Scholar
  696. 1961 [43]
    Oldroyd, J. G.: The hydrodynamics of materials whose rheological properties are complicated. Rheol. Acta 1 (1958/61), 337–344. (104, 119)Google Scholar
  697. 1961 [44]
    Philippoff, W.: Elastic stresses and birefringence in flow. Trans. Soc. Rheol. 5, 163–191. (116) 1961Google Scholar
  698. 1961 [45]
    Pipkin, A. C., and R. S. Rivlin: Electrical conduction in a stretched and twisted tube. J. Math. and Phys. 2, 636–638. (97) 1961Google Scholar
  699. 1961 [46]
    Pipkin, A. C., and R. S. Rivlin: Small deformations superposed on large deformations in materials with fading memory. Arch. Rational Mech. Anal. 8, 297–308. (41) 1961Google Scholar
  700. 1961 [47]
    Prager, W.: Introduction to Mechanics of Continua. Boston etc.: Ginn. German Transl. Einführung in die Kontinuumsmechanik. Basel: Birkhäuser. (42, 47, 99, 100) 1961Google Scholar
  701. 1961 [48]
    Rajeswari, G. K.: Flow of non-Newtonian fluid between torsionally oscillating disks. Proc. Indian Acad. Sci. A 54, 188–204. (119) 1961Google Scholar
  702. 1961 [49]
    Rathna, S. L., and G. K. Rajeswari: Superposability in non-Newtonian fluids with variable viscosity and cross-viscosity coefficients. Proc. Nat. Acad. Sci. India 27. (119) 1961Google Scholar
  703. 1961 [50]
    Reiner, M.: Research on cross stresses in the flow of rarefied air. Technical report. The Technion. 1 March. (116) 1961Google Scholar
  704. 1961 [51]
    Rivlin, R. S.: Constitutive equations involving functional dependence of one vector on another. Z. angew. Math. Phys. 12, 447–452. (13, 29, 33) 1961MathSciNetMATHCrossRefGoogle Scholar
  705. 1961 [52]
    Rivlin, R. S.: Some reflections on non-linear visco-elastic fluids. Phénomènes de relaxation et du fluage en rhéologie non-linéaire, pp. 83–93. Paris: Ed. C.N.R. S. (104, 119) 1961Google Scholar
  706. 1961 [53]
    Schwarzl, F.: Einige Betrachtungen zum gegenwärtigen Stand der makroskopischen Theorien des rheologischen Verhaltens. Rheol. Acta 1 (1958/61), 345–355. (104) 1961Google Scholar
  707. 1961 [54]
    Seeger, A.: Recent advances in the theory of defects in crystals. Physica Status Solidi 1, 669–698. (34) 1961Google Scholar
  708. 1961 [55]
    Sinha, S. B.: Torsional vibrations of an hypo-elastic cylinder. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 9, 197–200. (103) 1961Google Scholar
  709. 1961 [56]
    Sinha, S. B.: Torsional vibrations of a hypo-elastic circular cylinder. Arch. Mech. Stosow. 13, 389–392. (103) 1961Google Scholar
  710. 1961 [57]
    Slattery, J.: Flow of a simple non-Newtonian fluid past a sphere. Appl. Sci. Res. A 10, 286–294. (119) 1961Google Scholar
  711. 1961 [58]
    Slattery, J. C., and R. B. Bird: Non-Newtonian flow past a sphere. Chem. Engr. Sci. 16, 231–241. (119) 1961Google Scholar
  712. 1961 [59]
    Spencer, A. J. M.: The invariants of six symmetric 3 X 3 matrices. Arch. Rational Mech. Anal. 7, 64–77. (11) 1961Google Scholar
  713. 1961 [60]
    Srivastava, A. C.: Flow of non-Newtonian fluids at small Reynolds number between two infinite disks: one rotating and the other at rest. Quart. J. Mech. Appl. Math. 14, 353–358. (119) 1961Google Scholar
  714. 1961 [61]
    Toupin, R. A.: Some relations between waves, stability, uniqueness criteria, and restrictions on the form of the energy function in elasticity theory. Lecture to the British Appl. Math. Coll. Newcastle-on-Tyne (widely circulated in manuscript but not published). (52, 74) 1961Google Scholar
  715. 1961 [62]
    Toupin, R. A., and B. Bernstein: Sound waves in deformed perfectly elastic materials. Acousto-elastic effect. J. Acoust. Soc. Amer. 33, 216–225. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965. (45, 52, 66, 68, 71, 73, 76, 77, 90)Google Scholar
  716. 1961 [63]
    Truesdell, C.: General and exact theory of waves in finite elastic strain. Arch. Rational Mech. Anal. 8, 263–296. Reprinted in Problems of Non-linear Elasticity. Intl. Sci. Rev. Ser. New York: Gordon and Breach 1965 and also in Wave Propagation in Dissipative Materials. Berlin-Heidelberg-New York: Springer 1965. (45, 48, 52, 71, 72, 73, 74, 75, 76, 77, 82, 84, 90, 93)Google Scholar
  717. 1961 [64]
    Truesdell, C.: Una teoria meccanica della diffusione. Celebraz. Archimedee Sec. XX (1960), III Simposio di mecc. e mat. applic. 161–168. (130)Google Scholar
  718. 1961 [65]
    Urbanowski, W. Deformed body structure. Arch. Mech. Stosow. 13, 277–294. (69) 1961Google Scholar
  719. 1961 [66]
    Verma, P. D. S.: Steady flow formation of linear fluent bodies with suction. J. Sci. Engr. Res. 5, 17–22. (119) 1961Google Scholar
  720. 1961 [67]
    Verma, P. D. S.: Solid rotating shafts II. Bull. Inst. Poly. Jasi (2) 7, 41–44. (103) 1961Google Scholar
  721. 1961 [68]
    Walters, K.: The motion of an elastico-viscous liquid contained between coaxial cylinders (III). Quart. J. Mech. Appl. Math. 14, 431–436. (113) 1961Google Scholar
  722. 1961 [69]
    Ziegenhausen, A. J., R. B. Bird, and M. W. Johnson, jr.: Non-Newtonian flow around a sphere. Trans. Soc. Rheol. 5, 47–49. (119) 1961Google Scholar
  723. 1962 [1]
    Adkins, J. E.: Syzygies relating the invariants for transversely isotropic materials. Arch. Rational Mech. Anal. 11, 357–367. (11) 1962Google Scholar
  724. 1962 [2]
    Amari, S.: A geometrical theory of moving dislocations and anelasticity. Res. Assn. Appl. Geom. (Tokyo) Res. Note (3), No. 52. (34) 1962Google Scholar
  725. 1962 [3]
    Bernstein, B.: Conditions for second-order waves in hypo-elasticity. Trans. Soc. Rheol. 6, 263–273. (102) 1962Google Scholar
  726. 1962 [4]
    Bernstein, B., and R. A. Toupin: Some properties of the Hessian matrix of a strictly convex function. J. reine angew. Math. 210, 65–72. (51) 1962Google Scholar
  727. 1962 [5]
    Bhatnagar, P. L.: Non-Newtonian fluids. Proc. 49th Indian Sci. Congr. (Cuttack, 1961/62), pp. 1–30. (104, 119) 1962Google Scholar
  728. 1962 [6]
    Bhatnagar, P. L., and G. K. Rajeswari: The secondary flows induced in a non-Newtonian fluid between two parallel infinite oscillating plates. J. Indian Inst. Sci. 44, 219–238. (123) 1962Google Scholar
  729. 1962 [7]
    Blatz, P. J., and W. L. Ko: Application of finite elasticity theory to deformation of rubbery materials. Trans. Soc. Rheol. 6, 223–251. (59) 1962Google Scholar
  730. 1962 [8]
    Chu, Boa-Teh: Stress waves in isotropic viscoelastic materials. I. Brown Univ. Div. Engr. Dept. Defense ARPA Report, March. (96t) 1962Google Scholar
  731. 1962 [9]
    Coleman, B. D.: Mechanical and thermodynamical admissibility of stress-strain functions. Arch. Rational Mech. Anal. 9, 172–186. (52, 83)Google Scholar
  732. 1962 [10]
    Coleman, B. D.: Kinematical concepts with applications in the mechanics and thermodynamics of incompressible viscoelastic fluids. Arch. Rational Mech. Anal. 9, 273–300. (106, 107, 108, 109, 123) 1962Google Scholar
  733. 1962 [11]
    Coleman, B. D.: Substantially stagnant motions. Trans. Soc. Rheol. 6, 293–300. (109) 1962Google Scholar
  734. 1962 [12]
    Coleman, B. D., and W. Noll: Steady extension of incompressible simple fluids. Phys. Fluids 5, 840–843. (118) 1962Google Scholar
  735. 1962 [13]
    Datta, S. K.: Slow steady rotation of a sphere in a non-Newtonian inelastic viscous fluid. Appl. Sci. Res. A 11 (1962/63), 47–52. (119)Google Scholar
  736. 1962 [14]
    Ericksen, J. L.: Kinematics of macromolecules. Arch. Rational Mech. Anal. 9, 1–8. (98, 127) 1962Google Scholar
  737. 1962 [15]
    Ericksen, J. L.: Hydrostatic theory of liquid crystals. Arch. Rational Mech. Anal. 9, 379–394. (128) 1962Google Scholar
  738. 1962 [16]
    Ericksen, J. L.: Nilpotent energies in liquid crystal theory. Arch. Rational Mech. Anal. 10, 189–196. (128) 1962Google Scholar
  739. 1962 [17]
    Ericksen, J. L.: Orientation induced by flow. Trans. Soc. Rheol. 6, 275–291. (129) 1962Google Scholar
  740. 1962 [18]
    Eringen, A. C.: Non-linear Theory of Continuous Media. New York etc.: McGraw-Hill. xii -1–477 pp. (5, 42, 43, 97, 98, 99, 100, 103, 104) Cf. the review by PIPKIN [1964, 67].Google Scholar
  741. 1962 [19]
    Flavin, J. N.: Thermo-elastic Rayleigh waves in a prestressed medium. Proc. Cambridge Phil. Soc. 58, 532–538. (95, 96) 1962Google Scholar
  742. 1962 [20]
    Giesekus, H.: Elasto-viskose Flüssigkeiten, für die in stationären Schichtströmungen sämtliche Normalspannungskomponente verschieden groß sind. Rheologica Acta 2, 50–62. (108) 1962Google Scholar
  743. 1962 [21]
    Giesekus, H.: Strömungen mit konstanten Geschwindigkeitsgradienten und die Bewegung von darin suspendierten Teilchen. I und II. Rheologica Acta 2, 101–122. (30) 1962Google Scholar
  744. 1962 [22]
    Giesekus, H.: Flüssigkeiten mit im Ruhestand singulärem Fließverhalten (quasi-plastische Flüssigkeiten). Rheologica Acta 2, 122–130. (108, 119) 1962Google Scholar
  745. 1962 [22 A]
    Gnexus,H.:DierheologischeZuslandsglcichungclasto-viskoserFlüssigkeiten¨Cinsbesondere vonWeissenberg-Fliissigkeitcn ¨C far allgemeine und stationiire Fliessvorgänge. Z. angew. Math. Mech. 42. 32–61. (36) 1962Google Scholar
  746. 1962 [23]
    Green, A. E.: Thermoelastic stress in initially stressed bodies. Proc. Roy. Soc. Lond. A 266, 1–19.(70, 90, 96) 1962Google Scholar
  747. 1962 [24]
    Grioli, S.: Mathematical Theory of Elastic Equilibrium (Recent Results). Ergeb. angew. Math. No. 7. Berlin-Göttingen-Heidelberg: Springer. (42, 44, 46, 63, 64, 65, 94, 98, 99) 1962Google Scholar
  748. 1962 [25]
    Guo Zhong-Heng: The problem of stability and vibration of a circular plate subject to finite initial deformation. Arch. Mech. Stosow. 14, 239–252. (60) 1962Google Scholar
  749. 1962 [26]
    Guo Zhong-Heng: Certain problems of initially deformed plate. Arch. Mech. Stosow. 14, 779–788. (60) 1962Google Scholar
  750. 1962 [27]
    Guo Zhong-Heng: Vibration and stability of a cylinder subject to finite deformation. Arch. Mech. Stosow. 14, 757–768. (68 b) 1962Google Scholar
  751. 1962 [28]
    Guo Zhong-Heng: The equations of motion of a circular plate subject to initial strain. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 63–70. (60) 1962Google Scholar
  752. 1962 [29]
    Guo Zhong-Heng: The equation of motion of a plate subject to initial homogeneous finite deformation. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 107–113. (60) 1962Google Scholar
  753. 1962 [30]
    Guo Zhong-Heng: A contribution to the theory of variated states of finite strain. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 129–133. (66) 1962Google Scholar
  754. 1962 [31]
    Guo Zhong-Heng: Equations of small motion of a cylinder subject to a large deformation. Its natural vibration and stability. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 177–182. (68b) 1962Google Scholar
  755. 1962 [32]
    Guo Zhong-Heng: Variated states of membranes subject to finite deformation. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 307–312. (60) 1962Google Scholar
  756. 1962 [33]
    Guo Zhong-Heng: Displacement equations of isentropic motion of a body subject to a finite isothermal initial strain. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 479–483. (96) 1962Google Scholar
  757. 1962 [34]
    Hill, R.: Acceleration waves in solids. J. Mech. Phys. Solids 10, 1–16. (52, 68b, 78, 102) 1962Google Scholar
  758. 1962 [35]
    Hill, R.: Uniqueness criteria and extremum principles in self-adjoint problems of continuum mechanics. J. Mech. Phys. Solids 10, 185–194. (101) 1962Google Scholar
  759. 1962 [36]
    Jain, M. K.: Forced flow of a non-Newtonian liquid against a rotating disk. Bull. Inst. Polit. Iasi. (2) 8 (12), 83–92. (119)Google Scholar
  760. 1962 [37]
    Jain, M. K.: Heat transfer by laminar natural-convection flow of visco-elastic fluids between parallel walls. Arch. Mech. Stosow. 14, 747–756. (119) 1962Google Scholar
  761. 1962 [38]
    Jones, E. E., and J. E. Adkins: Perturbation problems in finite elasticity. Perturbation of constraint conditions. J. Math. Mech. 11, 341–370. (43) 1962Google Scholar
  762. 1962 [39]
    Kaliski, S., Z. Plocnocxt, and D. Rogula: The asymmetry of the stress tensor and the angular momentum conservation for a combined mechanical and electromagnetic field in a continuous medium. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 135–141. (98) 1962Google Scholar
  763. 1962 [40]
    Kapur, J. N.: Some aspects of non-Newtonian flow. Math. Seminar 2 (1961), 181–204. (104)Google Scholar
  764. 1962 [41]
    Kapur, J. N., and S. Goel: A stability theorem for general non-Newtonian fluid. Appl. Sci. Res. A 11, 304–310. (123) 1962Google Scholar
  765. 1962 [42]
    Knowles, J. A.: On a class of oscillations in the finite-deformation theory of elasticity. J. Appl. Mech. 29, 283–286. (62, 95) 1962Google Scholar
  766. 1962 [43]
    Kondo, K., and Collaborators: Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by means of Geometry, III. Tokyo: Gakujutsu Bunken Fukyu-Kai. (34) 1962Google Scholar
  767. 1962 [44]
    Kroner, E.: Dislocations and continuum mechanics. Appl. Mech. Rev. 15, 599–606. (44, 98) 1962Google Scholar
  768. 1962 [45]
    Leigh, D. C.: Non-Newtonian fluids and the second law of thermodynamics. Phys. Fluids 5, 501–502. (119) 1962Google Scholar
  769. 1962 [46]
    Mindlin, R. D., and H. F. Tiersten: Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal. 11, 415–448. (98) 1962Google Scholar
  770. 1962 [47]
    Mohan Rao, D. K.: Rectilinear motion of a Maxwell fluid. J. Indian. Inst. Sci. 45, 19–20. (119) 1962Google Scholar
  771. 1962 [48]
    Mohan Rao, D. K.: Flow of a Maxwell liquid between two rotating coaxial cones having the same vertex. Proc. Indian Acad. Sci. 56, 198–205. (119) 1962Google Scholar
  772. 1962 [49]
    Nanda, R. S.: On the three-dimensional flow of certain non-Newtonian fluids. Arch. Mech. Stosow. 14, 137–145. (119) 1962Google Scholar
  773. 1962 [50]
    Noll, W.: Motions with constant stretch history. Arch. Rational Mech. Anal. 11, 97–105. (106, 107, 108, 109) 1962Google Scholar
  774. 1962 [51]
    Pao, Y.-H.: Theories for the flow of dilute solutions of polymers and of non-diluted liquid polymers. J. Polymer Sci. 61, 413–448. (119) 1962Google Scholar
  775. 1962 [52]
    Rajeswari, G K Laminar boundary layer on rotating sphere and spheroids in non-Newtonian fluids. Z. angew. Math. Phys. 13, 442–460. (119) 1962Google Scholar
  776. 1962 [53]
    Rajeswari, G. K., and S. L. Rathna: Flow of a particular class of non-Newtonian visco-elastic and visco-inelastic fluids near a stagnation point. Z. angew. Math. Phys. 13, 43–57. (123) 1962Google Scholar
  777. 1962 [54]
    Rathna, S. L.: Slow motion of a non-Newtonian liquid past a sphere. Quart. J. Mech. Appl. Math. 15, 427–434. (119) 1962Google Scholar
  778. 1962 [55]
    Rathna, S. L.: Flow of a particular class of non-Newtonian fluids near a rotating disk. Z. angew. Math. Mech. 42, 231–237. (123) 1962Google Scholar
  779. 1962 [56]
    Reiner, M.: Research on cross stresses in the flow of different gases. Technion Res. Devel. Found. Report, 1st April. (116) 1962Google Scholar
  780. 1962 [57]
    Rivlin, R. S.: Constraints on flow invariants due to incompressibility. Z. angew. Math. Phys. 13, 589–591. (24) 1962Google Scholar
  781. 1962 [58]
    Schaefer, H.: Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums. Misz. Angew. Math. Festschrift Tollmien. Berlin: Akademie-Verlag. (98) 1962Google Scholar
  782. 1962 [59]
    Schlechter, R. S.: On a variational principle for the Reiner-Rivlin fluid. Chem. Engr. Sci. 17, 803–806. (119) 1962Google Scholar
  783. 1962 [60]
    Sedov, L. I.: Introduction to the Mechanics of Continuous Media [in Russian]. Moscow. Gosud. Izdat. Fiz-Mat. Lit. (96) 1962Google Scholar
  784. 1962 [61]
    Slattery, J. C.: Approximations to the drag force on a sphere maving slowly through either an Ostwald-DeWaele or a Sisko fluid. A.I.Ch.E. Jonral 8, 663–667. (119) 1962Google Scholar
  785. 1962 [62]
    Smith, G. F.: Further results on the strain-energy function for anisotropie elastic materials. Arch. Rational Mech. Anal. 10, 108–118. (85) 1962Google Scholar
  786. 1962 [63]
    Spencer, A. J. M., and R. S. Rivlin: Isotropic integrity bases for vectors and second-order tensors. I. Arch. Rational. Mech. Anal. 9, 45–63. (11) 1962Google Scholar
  787. 1962 [64]
    Toupin, R. A.: Elastic materials with couple-stresses. Arch. Rational Mech. Anal. 11, 385–414. (98) 1962Google Scholar
  788. 1962 [65]
    Truesdell, C.: Solutio generalis et accurata problematum quamplurimorum de motu corporum elasticorum incomprimibilium in deformationibus valde magnis. Arch. Rational Mech. Anal. 11, 106–113. Addendum 12, 427–428 (1963). (30, 61)Google Scholar
  789. 1962 [66]
    Truesdell, C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336–2344. (130) 1962Google Scholar
  790. 1962 [67]
    Varley, E.: Flows of dilatant fluids. Quart. Appl. Math. 19 (1961/62), 331–347. (119) 1962Google Scholar
  791. 1962 [68]
    Verma, P. D. S.: Couette flow of certain anisotropie fluids. Arch. Rational Mech. Anal. 10, 101–107. (129) 1962Google Scholar
  792. 1962 [69]
    Verma, P. D. S., and S. B. Sinha: A note on the propagation of symmetrical disturbance from a transverse cylindrical hole in an infinite plate. Bull. Calcutta Math. Soc. 54, 75–78. (103) 1962Google Scholar
  793. 1962 [70]
    Walters, K.: A note on the rectilinear flow of elastico-viscous liquids through straight pipes of circular cross-section. Arch. Rational Mech. Anal. 9, 411–414. (119) 1962Google Scholar
  794. 1962 [71]
    Walters, K.: Non-Newtonian effects in some elastico-viscous liquids whose behavior at small rates of shear is characterized by a general linear equation of state. Quart. J. Mech. Appl. Math. 15, 63–76. (119) 1962Google Scholar
  795. 1962 [72]
    Wehrli, C., and H. Ziegler: Einige mit dem Prinzip von der größten Dissipationsleistung verträgliche Stoffgleichungen. Z. angew. Math. Phys. 13, 372–393. (96, 119) 1962Google Scholar
  796. 1962 [73]
    Wesolowsxl, Z.: Stability in some cases of tension in the light of the theory of finite strain. Arch. Mech. Stosow. 14, 875–900. (68b) 1962Google Scholar
  797. 1962 [74]
    Wesolowski, Z.: Some stability problems of tension in the light of the theory of finite strains. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 123–128. (68b) 1962Google Scholar
  798. 1962 [75]
    Williams, M. C., and R. B. Bird: Three-constant Oldroyd model for viscoelastic fluids. Phys. Fluids 5, 1126–1128. (119) 1962Google Scholar
  799. 1962 [76]
    Woo, T. C., and R. T. Shield: Fundamental solutions for small deformations superposed on finite biaxial extension of an elastic body. Arch. Rational. Mech. Anal. 9, 196–224. (70) 1962Google Scholar
  800. 1962 [77]
    Zahorski, S. L.: Equations of the theory of large elastic deformations in terms of the geometry of the undeformed body. Arch. Mech. Stosow. 14, 941–956. (43) 1962Google Scholar
  801. 1962 [78]
    Zahorski, S.: On a certain form of the equations of the theory of finite elastic strain. Bull. Acad. Sci. Polon. Sér. Sci. Tech. 10, 415–420. (43) 1962Google Scholar
  802. 1962 [79]
    Zahorski, S.: Experimental investigation of certain mechanical properties of rubber. Bull. Acad. Sci. Polon. Ser. Sci. Tech. 10, 421–427. (57) 1962Google Scholar
  803. 1963 [1]
    Adkins, J. E.: Non-Linear diffusion. I. Diffusion and flow of mixtures of fluids. Phil. Trans. Roy. Soc. Lond. A 255, 607–633. (130) 1963Google Scholar
  804. 1963 [2]
    Adkins, J. E.: Non-linear diffusion, II. Constitutive equations for mixtures of isotropic fluids. Phil. Trans. Roy. Soc. Lond. A 255, 635–648. (130) 1963Google Scholar
  805. 1963 [3]
    Adxins, J. E., and R. S. Rivlin: Propagation of electromagnetic waves in circular rods in torsion. Phil. Trans. Roy. Soc. Lond. A 255, 389–416. (97) 1963Google Scholar
  806. 1963 [4]
    Barenblatt, G. I., and G. G. Chernyi: On moment relations on surfaces of discontinuity in dissipative media. PMM 27, 1205–1218 (transi, of Priklad. Mat. Mekh. 27, 784–793). (96t, 123) 1963Google Scholar
  807. 1963 [5]
    Bernstein, B., E. A. Kearsley, and L. J. Zapas: A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7, 391–410. (37, 39) 1963Google Scholar
  808. 1963 [6]
    Bhatnagar, P. L., and G. K. Rajeswari: Mouvement secondaire d’un fluide non newtonien compris entre deux sphères concentriques tournant autour d’un axe. C. R. Acad. Sci. Paris 256, 3823–3826. (123) 1963Google Scholar
  809. 1963 [7]
    Bhatnagar, P. L., and G. K. Rajeswari: Secondary flow of non-Newtonian fluids between two concentric spheres rotating about an axis. Indian J. Math. 5, 93–112. (123) 1963Google Scholar
  810. 1963 [8]
    Bhatnagar, P. L., and S. L. Rathna: Flow of a fluid between two rotating coaxial cones having the same vertex. Quart. J. Mech. Appl. Math. 16, 329–346. (123) 1963Google Scholar
  811. 1963 [9]
    Bondar, V. D.: On the possibility of considering the deformed and stressed states of a medium as the initial state. PMM 27, 185–196 (transl. of Priklad. Mat. Mekh. 27, 135–141). (47) 1963Google Scholar
  812. 1963 [10]
    Bragg, L. E., and B. D. Coleman: On strain energy functions for isotropic elastic materials. J. Math. and Phys. 4, 424–426. (87) 1963Google Scholar
  813. 1963 [11]
    Bragg, L. E., and B. D. Coleman: A thermodynamical limitation on compressibility. J. Math, and Phys. 4, 1074–1077. (52) 1963Google Scholar
  814. 1963 [12]
    Bressan, A.: Sulla propagazione delle onde ordinarie di discontinuit¨¤ nei sistemi a trasformazioni reversibili. Rend. Sem. Mat. Padova 33, 99–139. (74) 1963Google Scholar
  815. 1963 [13]
    Bressan, A.: Termodinamica e magneto-viscoelasticit¨¤ con deformazioni finite in relativit¨¤ generale. Rend. Sem. Mat. Padova 34 (1964), 1–73. (5)Google Scholar
  816. 1963 [14]
    Bressan, A.: Una teoria di relativit¨¤ generale includente, oltre all’ellettromagnetismo e alla termodinamica, le equazioni costitutive dei materiali ereditari. Sistemazione assiomatica. Rend. Sem. Mat. Padova 34 (1964), 74–109. (5)Google Scholar
  817. 1963 [15]
    Bressan, A.: Sui sistemi continui nei caso asimmetrico. Ann. di Mat. Pur. Appt. (4) 62, 169–222. (98) 1963Google Scholar
  818. 1963 [16]
    Bressan, A.: Onde ordinarie di discontinuit¨¤ nei mezzi elastici con deformazioni finite in relativit¨¤ generale. Riv. Mat. Univ. Parma (2) 4, 23–40. (5) 1963Google Scholar
  819. 1963 [17]
    Coleman, B. D., and V. Mizel: Thermodynamics and departures from FOURIER’S law of heat conduction. Arch. Rational Mech. Anal. 13, 245–261. (96) 1963Google Scholar
  820. 1963 [18]
    Coleman, B. D., and W. Noll: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178. (96) 1963Google Scholar
  821. 1963 [19]
    Dahler, H. S., and L. E. Scriven: Theory of structured continua. I. General considerations of angular momentum and polarization. Proc. Roy Soc. Lond. A 275, 505–527. (3, 98) 1963Google Scholar
  822. 1963 [20]
    Ericesen, J. L.: Recoil of orientable fluids. Proc. 7th Congr. Theor. Appt. Mech. Bombay 1961, pp. 211–218. (129)Google Scholar
  823. 1963 [21]
    Ericksen, J. L.: Oriented solids. Proc. Sympos. Structural Dynamics. Tech. Doc. Rept. ASD-TDR-63–140. Wright-Patterson Air Force Base, Ohio. May. (98, 127) 1963Google Scholar
  824. 1963 [22]
    Eringen, A. C.: On the foundations of electro-elastostatics. Intl. J. Engr. Sci. 1, 127–153. (97) 1963Google Scholar
  825. 1963 [23]
    Flavin, J. N.: Surface waves in pre-stressed Mooney material. Quart. J. Mech. Appl. Math. 16, 441–449. (9,5) 1963Google Scholar
  826. 1963 [24]
    Fosdick, R. L., and R. T. Shield: Small bending of a circular bar superposed on finite extension or compression. Arch. Rational Mech. Anal. 12, 223¡ª 248. (67, 68b) 1963Google Scholar
  827. 1963 [25]
    Giesekus, H.: Die simultane Translations-and Rotationsbewegung einer Kugel in einer elastoviskosen Flüssigkeit. Rheol. Acta 3, 59–71. (115) 1963Google Scholar
  828. 1963 [26]
    Green, A. E.: A note on wave propagation in initially deformed bodies. J. Mech. Phys. Solids 11, 119–126. (74, 90, 93) 1963Google Scholar
  829. 1963 [27]
    Greensmith, H. W.: Rupture of rubber, X. The change in stored energy on making a small cut in a test piece held in simple extension. J. Appl. Polymer Sci. 7, 993–1002. (83) 1963Google Scholar
  830. 1963 [28]
    Greub, W.: Linear Algebra, 2nd Ed. Berlin-Göttingen-Heidelberg: Springer. (6) 1963Google Scholar
  831. 1963 [29]
    Guo Zhong-Heng: Homographic representation of the theory of finite thermoelastic deformations. Arch. Mech. Stosow. 15, 475–505. (42) 1963Google Scholar
  832. 1963 [30]
    Guo Zhong-Heng: Some notes on hypoelasticity. Arch. Mech. Stosow. 15, 683–690. (99) 1963Google Scholar
  833. 1963 [31]
    Guo Zhong-Heng: Certain dynamical problems of an incompressible hypo-elastic sphere. Arch. Mech. Stosow. 15, 871–878. (103) 1963Google Scholar
  834. 1963 [32]
    Guo Zhong-Heng: On the constitutive equation of hypoelasticity. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 301–304. (99) 1963Google Scholar
  835. 1963 [33]
    Guo Zhong-Heng, and R. Solecki: Free and forced finite-amplitude oscillations of an elastic thick-walled hollow sphere made of incompressible material. Arch. Mech. Stosow. 15, 427–433. (62, 95) 1963Google Scholar
  836. 1963 [34]
    Guo Zhong-Heng, and R. Solecki: Free and forced finite-amplitude oscillations of a thick-walled sphere of incompressible material. Bull Acad. Polon. Sci. Sér. Sci. Tech. 11, 47–52. (62) 1963Google Scholar
  837. 1963 [35]
    Guo Zhong-Heng, and W. Urbanowski: Stability of non-conservative systems in the theory of elasticity of finite deformations. Arch. Mech. Stosow. 15, 309–321. (68b) 1963Google Scholar
  838. 1963 [36]
    Guo Zhong-Heng, and W. Urbanowski: Certain stationary conditions in variated states of finite strain. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 27–32. (69) 1963Google Scholar
  839. 1963 [37]
    Hayes, M.: Wave propagation and uniqueness in pre-stressed elastic solids. Proc. Roy. Soc. Lond. A 274, 500–506. (68) 1963Google Scholar
  840. 1963 [38]
    Herbert, D. M.: On the stability of viscoelastic liquids in heated plane Couette flow. J. Fluid Mech. 17, 353–359. (119) 1963Google Scholar
  841. 1963 [39]
    Kaliski, S.: On a model of the continuum with essentially non-symmetric tensor of mechanical stress. Arch. Mech. Stosow. 15, 33–45. (98) 1963Google Scholar
  842. 1963 [40]
    Kapur, J. N.: Flow of Reiner-Rivlin fluids in a magnetic field. Appl. Sci. Res. B 10, 183–194. (119) 1963Google Scholar
  843. 1963 [41]
    Kapur, J. N., and R. C. Gupta: Two dimensional flow of visco-elastic fluid near a stagnation point with large suction. Arch. Mech. Stosow. 15, 711–717. (119) 1963Google Scholar
  844. 1963 [42]
    Koh, S. L., and A. C. Eringen: On the foundations of non-linear thermo-viscoelasticity. Int. J. Engr. Sci. 1, 199–229. (96) 1963Google Scholar
  845. 1963 [43]
    Kröner, E.: Zum statischen Grundgesetz der Versetzungstheorie. Ann. Physik (7) 11, 13–21 (44). 1963Google Scholar
  846. 1963 [44]
    Kröner, E.: On the physical reality of torque stresses in continuum mechanics. Int. J. Engr. Sci. 1, 261–278. (44, 98) 1963Google Scholar
  847. 1963 [45]
    Langlois, W. E.: Steady flow of a slightly visco-elastic fluid between rotating spheres. Quart. Appl. Math. 21, 61–71. (115) 1963Google Scholar
  848. 1963 [46]
    Langlois, W. E., and R. S. Rivlin: Slow steady-state flow of visco-elastic fluids through non-circular tubes. Rend. Mat. 22, 169–185. (122) 1963Google Scholar
  849. 1963 [47]
    Lianis, G.: Finite elastic analysis of an infinite plate with an elliptic hole in plane strain. Proc. 4th U.S. Nat. Congr. Appl. Mech. 1962, pp. 667–683. (60, 67)Google Scholar
  850. 1963 [48]
    Lianis, G.: Small deformations superposed on an initial large deformation in finite linear viscoelastic material. Univ. Washington Dept. Aero. Engr. Rep. 63–64, April. (41) 1963Google Scholar
  851. 1963 [49]
    Lianis, G.: Equivalence of constitutive equations for non-linear materials with memory. Univ. Washington Dept. Aero. Engr. Rep. 63–5, April. (29) 1963Google Scholar
  852. 1963 [50]
    Lianis, G.: Problems of small strains superposed on finite deformation in viscoelastic solids. Purdue Univ. Sch. Aero. Engr. Rep. 63–5, June. (41) 1963Google Scholar
  853. 1963 [51]
    Lianis, G.: Constitutive equations of viscoelastic solids under finite deformation. Purdue Univ. Sch. Aero. Engr. Rep. 63–11, December. (41) 1963Google Scholar
  854. 1963 [52]
    Lokhin, V. V.: A system of defining parameters characterizing the geometrical properties of an anisotropic medium [in Russian]. Dokl. Akad. Nauk SSSR 149, 295–297. English Transl., Soviet Physics Doklady 8, 260–261. (13) 1963Google Scholar
  855. 1963 [53]
    Loxhin, V. V.: General forms of the relations between tensor fields in an anisotropic continuous medium, the properties of which are described by vectors, tensors of the second rank, and antisymmetric tensors of the third rank [in Russian]. Dokl. Akad. Nauk SSSR 149, 1282–1285. English. Transl., Soviet Physics Doklady 8, 345–348. (13) 1963Google Scholar
  856. 1963 [54]
    Lokhin, V. V., and L. I. Sedov: Non-linear tensor functions of several tensor arguments PMM 27, 597–629 (transi of Priklad. Mat. Mekh. 27, 393–417). (13) 1963Google Scholar
  857. 1963 [55]
    Markovitz, H., and D. R. Brown: Parallel plate and cone-plate normal stress measurements on polyisobutylene-cetane solutions. Trans. Soc. Rheol. 7, 137–154. (119) 1963Google Scholar
  858. 1963 [56]
    Nanda, R. S.: On the three-dimensional flow of certain non-Newtonian liquids. Appl. Sci. Res. A 11 (1962/63) 376–386. (119) 1963Google Scholar
  859. 1963 [57]
    Nanda, R. S.: Visco-elastic flow due to a vibrating plane. Arch. Mech. Stosow. 15, 599–606. (119) 1963Google Scholar
  860. 1963 [58]
    Noll, W.: La mécanique classique, basée sur un axiome d’objectivité. La Méthode Axiomatique dans les Mécaniques Classiques et Nouvelles. Colloque International, Paris (1959). Paris: Gauthier-Villars. pp. 47–56. (18, 19)Google Scholar
  861. 1963 [59]
    Novozhllov, V. V.: On the forms of the stress-strain relation for initially isotropic nonelastic bodies (geometric aspect of the question). PMM 27, 1219–1243 (transl. of Priklad. Mat. Mekh. 27, 794–812). (13) 1963Google Scholar
  862. 1963 [60]
    Pipkin, A. C., and R. S. Rivlin: Normal stresses in flow through tubes of non-circular cross-section. Z. angew. Math. Phys. 14, 738–742. (122) 1963Google Scholar
  863. 1963 [61]
    Pipkin, A. C., and A. S. Wineman: Material symmetry restrictions on non-polynomial constitutive equations. Arch. Rational Mech. Anal. 12, 420–426. (28) 1963Google Scholar
  864. 1963 [62]
    Sedov, L. I., and V. V. Lokhin: The specification of point symmetry groups by the use of tensors [in Russian]. Dokl. Akad. Nauk SSSR 149, 796–797. (13) 1963Google Scholar
  865. 1963 [63]
    Sensenig, C. B.: Instability of thick elastic solids. N.Y. Univ. Courant Inst. Math. Sci. Rep. 310, June. (condensed) Comm. Pure Appl. Math. 17, 451–491 (1964). (94)Google Scholar
  866. 1963 [64]
    Shield, R. T., and R. L. Fosdick: Extremum principles in the theory of small elastic deformations superposed on large elastic deformations. Progress in Applied Mechanics (Prager Anniv. Vol.). New York: Macmillan, pp. 107–125. (88) 1963Google Scholar
  867. 1963 [65]
    Shield, R. T., and A. E. Green: On certain methods in the stability theory of continuous systems. Arch. Rational Mech. Anal. 12, 354–460. (68b) 1963Google Scholar
  868. 1963 [66]
    Smith, G. F., M. M. Smith, and R. S. Rivlin: Integrity bases for a symmetric tensor and a vector ¡ª The crystal classes. Arch. Rational Mech. Anal. 12, 93–133. (11, 33) 1963Google Scholar
  869. 1963 [67]
    Srivastava, A. C.: Torsional oscillations of an infinite plate in second-order fluids. J. Fluid Mech. 17, 171–181. (123) 1963Google Scholar
  870. 1963 [68]
    Tanner, R. I.: Helical flow of elastico-viscous. liquids. Part I, Theoretical. Rheol. Acta 3, 21–26. (112) 1963Google Scholar
  871. 1963 [69]
    Tanner, R. I.: Helical flow of elastico-viscous liquids. Part II, Experimental. Rheol. Acta 3, 26–34. (119) 1963Google Scholar
  872. 1963 [70]
    Thomas, R. H., and K. Walters: On the flow of an elastico-viscous liquid in a curved pipe under a pressure gradient. J. Fluid Mech. 16, 228–242. (119) 1963Google Scholar
  873. 1963 [71]
    Ting, T. W.: Certain non-steady flows of second-order fluids. Arch. Rational Mech. Anal. 14, 1–26. (123) 1963Google Scholar
  874. 1963 [72]
    Toupin, R. A.: A dynamical theory of elastic dielectrics. J. Engr. Sci. 1, 101–126. (97) 1963Google Scholar
  875. 1963 [73]
    Truesdell, C.: Reactions of the history of mechanics upon modern research. Proc. 4th U.S. Nat. Congr. Appl. Mech. 1962, pp. 35–47. (44) 1963Google Scholar
  876. 1963 [74]
    Truesdell, C.: The meaning of BETTI’S reciprocal theorem. J. Res. Nat. Bur. Stand. B 67, 85–86. (88) 1963Google Scholar
  877. 1963 [75]
    Truesdell, C.: Remarks on hypo-elasticity. J. Res. Nat. Bur. Stand. B 67, 141–143. (100, 102) 1963Google Scholar
  878. 1963 [76]
    Truesdell, C., and R. A. Toupin: Static grounds for inequalities in finite elastic strain. Arch. Rational. Mech. Anal. 12, 1–33. (48, 51, 52, 64, 68, 87) 1963Google Scholar
  879. 1963 [77]
    Verma, P. D. S.: Electrical conduction in finitely deformed is6tropic materials. Arch. Mech. Stosow. 15, 3–6. (97) 1963Google Scholar
  880. 1963 [78]
    Verma, P. D. S.: Flow of anisotropic fluids between rotating coaxial cones. Arch. ki Mech. Stosow. 15, 767–773. (129) 1963Google Scholar
  881. 1963 [79]
    Verma, P. D. S.: A few examples showing use of hypo-elasticity in plasticity. Proc. Nat. Acad. Sci. India 33, 101–106. (103) 1963Google Scholar
  882. 1963 [80]
    Verma, P. D. S., and S. B. Sinha: Solutions in hypo-elasticity of grade one. J. Sci. Engr. Res. 7, 223–234. (103) 1963Google Scholar
  883. 1963 [81]
    Walters, K., and N. D. Waters: A note on the formulation of simple equations of state for elastico-viscous liquids. Z. angew. Math. Phys. 14, 742–745. (119) 1963Google Scholar
  884. 1963 [82]
    Wesolowski, Z.: The axially symmetric problem of stability loss of an elastic bar subject to tension. Arch. Mech. Stosow. 15, 383–395. (68 b) 1963Google Scholar
  885. 1963 [83]
    Wesolowski, Z.: An inverse method in stresses for solving problems of large elastic strain. Arch. Mech. Stosow. 15, 857–896. (44) List of Works Cited. 5731963Google Scholar
  886. 1963 [84]
    Wesolowski, Z.: The axial-symmetric problem of instability in the case of tension of the elastic rod. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 53–58. (68 b) 1963Google Scholar
  887. 1963 [85]
    Wesolowski, Z.: Duality of inverse methods in the theory of elasticity of finite deformations. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 305–309. (44) 1963Google Scholar
  888. 1963 [86]
    Zahorski, S.: Some problems of motions and stability for hygrosteric materials. Arch. Mech. Stosow. 15, 915–940. (41, 103) 1963Google Scholar
  889. 1963 [87]
    Zahorski, S.: Small additional motion superposed on the fundamental motion of a hypoelastic medium. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 449–454. (103) 1963Google Scholar
  890. 1963 [88]
    Zahorski, S.: Hypoelastic stability in the case of simple extension. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 11, 455–461. (103) 1963Google Scholar
  891. 1963 [89]
    Ziegler, H.: Some extremum principles in irreversible thermodynamics, with application to continuum mechanics. Progress in Solid. Mech. 4, 91–193. (19 A, 96) 1963Google Scholar
  892. 1964 [1]
    Adams, N., and A. S. Lodge: Rheological properties of concentrated polymer solutions. II. A cone-and-plate and parallel plate pressure distribution apparatus for determining normal stress differences in steady shear flow. Phil. Trans. Roy. Soc. Lond. A 256, 149–184. (115, 119) 1964Google Scholar
  893. 1964 [2]
    Adkins, J. E.: Non-linear diffusion through isotropic highly elastic solids. Phil. Trans. Roy. Soc. Lond. A 256, 301–316. (130) 1964Google Scholar
  894. 1964 [3]
    Adkins, J. E.: Diffusion of fluids through aeolotropic highly elastic solids. Arch. Rational Mech. Anal. 15, 222–234. (130) 1964MathSciNetADSMATHCrossRefGoogle Scholar
  895. 1964 [4]
    Beatty, M.: Some static and dynamic implications of the general theory of elastic stability. Thesis. Johns Hopkins Univ. (see also BEATTY [1965, 1]). (68b, 88, 89)Google Scholar
  896. 1964 [5]
    Bell, J. F.: Experiments on large amplitude waves in finite elastic strain. Proc. Intl. Sympos. Second-order Effects. Haifa 1962, pp. 173–186. (74)Google Scholar
  897. 1964 [6]
    Berker, R.: Contrainte sur une paroi en contacte avec un fluide visqueux classique, un fluide de STOKES, un fluide de Coleman-Noll. C. R. Acad. Sci. Paris 258, 5144–5147. (119, 123) 1964Google Scholar
  898. 1964 [7]
    Bernstein, B., E. A. Kearsley, and L. Zapas: Thermodynamics of perfect elastic fluids. J. Res. Nat. Bur. Stand. B 68, 103–113. (37, 96b) 1964Google Scholar
  899. 1964 [8]
    Bland, D. R.: On shock waves in hyperelastic media. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 93–108. (71, 73, 77) 1964Google Scholar
  900. 1964 [9]
    Bland, D. R.: Dilatational waves and shocks in large displacement isentropic dynamic elasticity. J. Mech. Phys. Solids 12, 245–267. (74) 1964MathSciNetADSCrossRefGoogle Scholar
  901. 1964 [10]
    Bousso, E.: Observations on the self-acting thrust airbearing effect. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 483–492. (116)Google Scholar
  902. 1964 [11]
    Bragg, L.: Monotonicity on curves in lieu of the C-N inequalities for finite elasticity. Arch. Rational Mech. Anal. 17, 327–338. (52, 85) 1964Google Scholar
  903. 1964 [12]
    Brugger, K.: Thermodynamic definition of higher order elastic coefficients. Phys. Rev. (2) 133, A 1611¡ªA 1612. (63) 1964Google Scholar
  904. 1964 [13]
    Chacon, R. V. S., and R. S. Rivlin: Representation theorems in the mechanics of materials with memory. Z. angew. Math. Phys. 15, 444–447. (28, 40) 1964Google Scholar
  905. 1964 [14]
    Chu, Boa-Teh: Finite amplitude waves in incompressible perfectly elastic materials J. Mech. Phys. Solids 12, 45–57. (74) 1964Google Scholar
  906. 1964 [15]
    Coleman, B. D.: Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17, 1–46. (96b) 1964Google Scholar
  907. 1964 [16]
    Coleman, B. D.: On thermodynamics, strain impulses, and viscoelasticity. Arch. Rational Mech. Anal. 17, 230–254. (96 b)Google Scholar
  908. 1964 [17]
    Coleman, B. D., and H. Markovitz: Normal stress effects in second-order fluids. J. Appl. Phys. 35, 1–9. (121, 123) 1964Google Scholar
  909. 1964 [18]
    Coleman, B. D., and V. J. Mizel: Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40, 1116–1125. (96) 1964Google Scholar
  910. 1964 [19]
    Coleman, B. D., and W. Noll: Material symmetry and thermostatic inequalities in finite elastic deformations. Arch. Rational Mech. Anal. 15, 87–111. (33, 40, 50, 52) 1964Google Scholar
  911. 1964 [20]
    Coleman, B. D., and W. Noll: Simple fluids with fading memory. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 530–552. (38, 39)Google Scholar
  912. 1964 [21]
    Condiff, D. W., and J. S. Dahler: Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7, 842–854. (119) 1964Google Scholar
  913. 1964 [22]
    Datta, S. K.: Note on the stability of an elastico-viscous liquid in Couette flow. Phys. Fluids 7, 1915–1919. (123) 1964Google Scholar
  914. 1964 [23]
    Drucker, D. C.: Survey on second-order plasticity. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 416–423. (103)Google Scholar
  915. 1964 [24]
    Duvaut, G.: Application du principe de l’indifférence matérielle ¨¤ un milieu élastique matériellement polarisé. C. R. Acad. Sci. Paris 258, 3631–3634. (98) 1964Google Scholar
  916. 1964 [25]
    Eringen, A. C.: Simple microfluids. Intl. J. Engr. Sci. 2, 205–217. (98) 1964Google Scholar
  917. 1964 [26]
    Eringen, A. C., and E. S. Surium: Non-linear theory of Simple microelastic solids-I. Intl. J. Engr. Sci. 2, 189–204. (98) 1964Google Scholar
  918. 1964 [27]
    Eringen, A. C., and E. S. Suxusi: Non-linear theory of micro-elastic solids-II. Intl. J. Engr. Sci. 2, 389–404. (98) 1964Google Scholar
  919. 1964 [28]
    Fisher, G. M. C., and M. E. Gurtin: Wave propagation in the linear theory of viscoelasticity. Brown Univ. Div. Appl. Math. Contract Nonr. 562 (25) Tech. Rep., 28, August. (96 t) 1964Google Scholar
  920. 1964 [29]
    Foux, A.: An experimental investigation of the Poynting effect. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 228–251. (66) 1964Google Scholar
  921. 1964 [30]
    Foux, A., and M. Reiner: Cross-stresses in the flow of rarefied air. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 450–466. (116)Google Scholar
  922. 1964 [31]
    Frater, K. R.: Flow of an elastico-viscous fluid between torsionally oscillating disks. J. Fluid Mech. 19, 175–186. (119) 1964MathSciNetADSMATHCrossRefGoogle Scholar
  923. 1964 [32]
    Frater, K. R.: Secondary flow in an elastico-viscous fluid caused by rotational oscillations of a sphere. Part. I. J. Fluid Mech. 20, 369–381. (119) 1964Google Scholar
  924. 1964 [33]
    Fredrickson, A. G.: Principles and Applications of Rheology. Englewood Cliffs: Prentice-Hall. (99, 104)Google Scholar
  925. 1964 [34]
    Giesexus, H.: Statistical rheology of suspensions and solutions with special reference to normal stress effects. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 553–584. (119)Google Scholar
  926. 1964 [35]
    Green, A. E.: A continuum theory of anisotropic fluids. Proc. Cambridge Phil. Soc. 60, 123–128. (126) 1964Google Scholar
  927. 1964 [36]
    Green, A. E.: Anisotropic simple fluids. Proc. Roy. Soc. Lond. A 279, 437–445. (126) 1964Google Scholar
  928. 1964 [37]
    Green, A. E., and J. E. Adkins: A contribution to the theory of non-linear diffusion. Arch. Rational Mech. Anal. 15, 235–246. (130) 1964Google Scholar
  929. 1964 [37A:]
    Green, A. E., and P. M. Nagrdi: A dynamical theory of interacting continua. Univ. Calif. Berkeley Div. Appl. Mech. Rep. AM-64–13. August. 1964Google Scholar
  930. 1964 [38]
    Green, A. E., and R. S. Rivlin: Simple force and stress multipoles. Arch. Rational Mech. Anal. 16, 325–353. (98) 1964Google Scholar
  931. 1964 [39]
    Green, A. E., and R. S. Rivlin: Multipolar continuum mechanics. Arch. Rational Mech. Anal. 17, 113–147. (98) 1964Google Scholar
  932. 1964 [40]
    Green, W. A.: Growth of plane discontinuities propagating into a homogeneously deformed elastic material. Arch. Rational Mech. Anal. 16, 79–88. (74, 77) 1964Google Scholar
  933. 1964 [41]
    Gurtin, M., and I. Herrera R.: On dissipation inequalities and linear viscoelasticity. Brown Univ. Div. Appl. Math. O.N.R. Rep. No. 27, June. (96 b) 1964Google Scholar
  934. 1964 [42]
    Hayes, M.: Uniqueness for the mixed boundary-value problem in the theory of small deformations superimposed upon large. Arch. Rational Mech. Anal. 16, 238–242. (68) 1964Google Scholar
  935. 1964 [43]
    Herrera R., I., and M. E. Gurtin: A correspondence principle for viscoelastic wave propagation. Quart. Appl. Math. 22, 360–364. (96 t) 1964Google Scholar
  936. 1964 [44]
    Holden, J. T.: Estimation of critical loads in elastic stability theory. Arch. Rational Mech. Anal. 17, 171–183. (68b) 1964Google Scholar
  937. 1964 [44A]
    Hoppman, W. H., II, and C. N. Barnett: Flow generated by a cone rotating in a liquid. Nature 201, 1205–1206. (115) 1964Google Scholar
  938. 1964 [45]
    Iyengar, S. R. K.: The stability of a non-Newtonian liquid between rotating concentric cylinders in the presence of a transverse pressure gradient. J. Sci. Engr. Res. 8, 31–40. (119) 1964Google Scholar
  939. 1964 [46]
    Jain, M. K.: Collocation method to study problems of cross-viscosity. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 623–635. (119) 1964Google Scholar
  940. 1964 [47]
    John, F.: Remarks on the non-linear theory of elasticity. Seminari Ist. Naz. Alta Matem. 1962/1963, 474–482. (44)Google Scholar
  941. 1964 [48]
    Jones, J. R.: Secondary flow of a non-Newtonian liquid between eccentric cylinders in relative motion. Z. angew. Math. Phys. 15, 329–341. (119) 1964Google Scholar
  942. 1964 [49]
    Kelly, P. D.: A reacting continuum. Intl. J. Engr. Sci. 2, 129–153. (130) 1964Google Scholar
  943. 1964 [50]
    Klingbeil, W. W., and R. T. Shield: Some numerical investigations on empirical strain energy functions in the large axi-symmetric extensions of rubber membranes. Z. angew. Math. Phys. 15, 608–629. (55) 1964Google Scholar
  944. 1964 [51]
    Ko, W. L., and P. J. Blatz: Application of finite visco-elastic theory to the deformation of rubberlike materials. I. Uniaxial stress relaxation data. Calif. Inst. Tech. GALCIT SM 64–4. January. (41) 1964Google Scholar
  945. 1964 [52]
    Lakshmana Rao, S. K.: Self-modelling flows of non-Newtonian viscous liquids. Z. angew. Math. Mech. 44, 65–66. (119) 1964Google Scholar
  946. 1964 [53]
    Lakshmana Rno, S. K.: Stagnation point-line vortex flow of non-linear viscous liquids. Z. angew. Math. Mech. 44, 67–69. (119) 1964Google Scholar
  947. 1964 [54]
    Leslie, F. M.: Hamel flow of certain anisotropic fluids. J. Fluid Mech. 18, 595–601. (129) 1964Google Scholar
  948. 1964 [55]
    Lianis, G.: Application of irreversible thermodynamics in finite viscoelastic deformations. Purdue Univ. Sch. Aero. Engr. Sci. Rep. 64–1. January. (41) 1964Google Scholar
  949. 1964 [56]
    Lianis, G., and P. H. Dehoff, jr.: Studies on constitutive equations of first and second order viscoelasticity. Purdue Univ. Rep. A and ES 64–10. September. (40) 1964Google Scholar
  950. 1964 [57]
    Lodge, A. S.: Elastic Liquids. London and New York: Academic Press. (104, 114) 1964Google Scholar
  951. 1964 [58]
    Lumley, J. L.: Turbulence in non-Newtonian fluids. Phys. Fluids 7, 335–337. (119) 1964Google Scholar
  952. 1964 [59]
    Markovitz, H., and D. R. Brown: Normal stress measurements on a polyisobutylene-cetane solution in parallel plate and cone plate instruments. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 585–602. (115, 116, 119, 123) 1964Google Scholar
  953. 1964 [60.
    ]Markovitz, H., and B. D. Coleman: Incompressible second-order fluids. Adv. Appl. Mech. 8, 69–101. (123) 1964Google Scholar
  954. 1964 [61]
    Markovitz, H., and B. D. Coleman: Nonsteady helical flows of second-order fluids. Phys. Fluids 7, 833–841. (123) 1964Google Scholar
  955. 1964 [61 A]
    Marris, A. W.: The reduction of the simple hygrosteric fluid to the Stokesian fluid. J. Appl. Mech. 31, 170–174. (119A) 1964Google Scholar
  956. 1964 [62]
    Mindlin, R. D.: Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51–78. (98) 1964Google Scholar
  957. 1964 [63]
    Nariboli, G. A.: The growth and propagation of waves in hypoelastic media. J. Math. Anal. Appl. 8, 57–65. (102) 1964Google Scholar
  958. 1964 [64]
    Noll, W.: Euclidean geometry and Minkowskian chronometry. Amer. Math. Monthly 71, 129–144. (17) 1964Google Scholar
  959. 1964 [65]
    Oldroyd, J. G.: Non-linear stress, rate of strain relations at finite rates of shear in so-called “linear” elasticoviscous liquids. Proc. Intl. Sympos. Second-order effects, Haifa 1962, pp. 520–529. (119).Google Scholar
  960. 1964 [66]
    Pipkin, A. C.: Alternating flow of non-Newtonian fluids in tubes of arbitrary cross-section. Arch. Rational. Mech. Anal. 15, 1–13. (121, 122) 1964Google Scholar
  961. 1964 [67]
    Pipkin, A. C.: Review of Eringen [1962, 17]. Quart. Appl. Math. 22, 172–173. (5) 1964Google Scholar
  962. 1964 [68]
    Pipkin, A. C.: Annular effect in viscoelastic fluids. Phys. Fluids 7, 1143–1146. (122)Google Scholar
  963. 1964 [68A]
    Pipkin, A. C.: Small finite deformations of viscoelastic solids. Rev. Mod. Phys. 36, 1034–1041. (41) 1964Google Scholar
  964. 1964 [69]
    Rajeswari, G. K.: On the effects of variable suction on the steady laminar flow due to rotating bodies of revolution in non-Newtonian fluid. Z. angew. Math. Mech. 44, 193 ¡ª202. (119) 1964Google Scholar
  965. 1964 [70]
    Rintel, L.: Flow of non-Newtonian fluids at small Reynolds number between two discs: one rotating and the other at rest. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 467–472. (119)Google Scholar
  966. 1964 [71]
    Rivlin, R. S.: Second and higher-order theories for the flow of a viscoelastic fluid in a non-circular pipe. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 668–677. (121, 122)Google Scholar
  967. 1964 [72]
    Rivlin, R. S.: A note on the mechanical constitutive equations for materials with memory. Z. angew. Math. Phys. 15, 652–654. (29) 1964Google Scholar
  968. 1964 [74]
    Seeger, A.: Discussion to paper by Foux. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, p. 251. (66)Google Scholar
  969. 1964 [75]
    Sensenig, C. B.: Non-linear theory for the deformation of pre-stressed circular plates and rings. N. Y. Univ. Courant. Inst. Math. Sci. Rep. IMM-NYU 326, June. (94) 1964Google Scholar
  970. 1964 [76]
    Sharma, G. C.: Superposability in second order fluid. J. Sci. Engr. Res. 8, 185–190. (123) 1964Google Scholar
  971. 1964 [77]
    Slattery, J. C.: Unsteady relative extension of incompressible simple fluids. Phys. Fluids 7, 1913–1914. (118) 1964Google Scholar
  972. 1964 [78]
    Slattery, J. C.: Time-reversed flows. J. Fluid mech. 19, 625–630. (119) 1964Google Scholar
  973. 1964 [79]
    Smith, G. F., and R. S. Rivlin: Integrity bases for vectors. The crystal classes. Arch. Rational Mech. Anal. 15, 169–221. (11, 33) 1964Google Scholar
  974. 1964 [80]
    Spencer, C. B.: Finite deformations of an almost incompressible elastic solid. Proc. Intl. Sympos. Second-order Effects. Haifa 1962, pp. 200–216. (43, 69) 1964Google Scholar
  975. 1964 [81]
    Tadjbakhsh, I. G., and R. A. Toupin: On the equations of finite deformations in deformed coordinates. Intl. Business Machines Res. Lab. (Yorktown Heights) Rep. R. C. 1111. January 30. (15, 62) 1964Google Scholar
  976. 1964 [82]
    Thomas, R. H., and K. Walters: The stability of elastico-viscous flow between rotating cylinders, I, II. J. Fluid Mech. 18, 33–43 and 19, 557–560. (119) 1964Google Scholar
  977. 1964 [83]
    Thurston, R. N., and K. Brugger: Third order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys. Rev. (2) 133, A 1604¡ªA 1610. (71, 77) 1964Google Scholar
  978. 1964 [84]
    Toupin, R. A.: Theories of elasticity with couple-stress. Arch. Rational Mech. Anal. 17, 85–112. (98) 1964Google Scholar
  979. 1964 [85]
    Truesdell, C.: The natural time of a visco-elastic fluid: its significance and measurement. Phys. Fluids 7, 1134–1142. (28, 108, 120, 121, 123) 1964Google Scholar
  980. 1964 [86]
    Truesdell, C.: A theorem on the isotropy groups of a hyperelastic material. Proc. Nat. Acad. Sci. U.S.A. 52, 1081–1083. (85, 87) 1964MathSciNetADSMATHCrossRefGoogle Scholar
  981. 1964 [87]
    Truesdell, C.: Second-order effects in the mechanics of materials. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 1–47. (108, 116, 121, 123) 1964Google Scholar
  982. 1964 [88]
    Truesdell, C.: Second-order theory of wave propagation in isotropic elastic materials. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 187–199. (77, 93)Google Scholar
  983. 1964 [89]
    Vainberg, M. M.: Variational Methods for the Study of Nonlinear Operators [transi. of a Russian book published in 1955 San Francisco, London, Amsterdam: Holden Day. (38)Google Scholar
  984. 1964 [90]
    Verma, P. D. S.: On waves in finite elastic strain. Indian J. Mech. Math. 2, 17–18. (71) 1964Google Scholar
  985. 1964 [91]
    Verma, P. D. S.: Symmetrical expansion of a hollow spherical dielectric. Intl. J. Engr. Sci. 2, 21–26. (97) 1964Google Scholar
  986. 1964 [92]
    Verma, P. D. S.: Helical flow of anisotropic fluids. J. Phys. Soc. Japan 19, 2214–2218. (129) 1964Google Scholar
  987. 1964 [93]
    Walters, K.: Non-Newtonian effects in some general elastico-viscous liquids. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 507–513. (119) 1964Google Scholar
  988. 1964 [94]
    Wesolowski, Z.: Problems of radial and axial oscilations of an elastic cylinder of infinitesimal length. Proc. Vibration Problems Warsaw 5, 19–29. (62) 1964Google Scholar
  989. 1964 [95]
    Wesolowski, Z.: The stability of an elastic orthotropic parallelepiped subject tofinite elongation. Bull. Acad. Polon. Sci. Sér. Sci. Tech. 12, 155–160. (68b) 1964Google Scholar
  990. 1964 [96]
    White, J. L.: Dynamics of viscoelastic fluids, melt fracture and the rheology of fibre spinning. J. Appl. Polymer Sci. (in press). (114, 123) 1964Google Scholar
  991. 1964 [97]
    Wineman, A. S., and A. C. Pipkin: Material symmetry restrictions on constitutive equations. Arch. Rational Mech. Anal. 17, 184–214. (11, 28) 1964Google Scholar
  992. 1964 [98]
    Zorski, H.: On the equations describing small deformations superposed on finite deformations. Proc. Intl. Sympos. Second-order Effects, Haifa 1962, pp. 109–128. (52, 68, 69, 70, 88) 1964Google Scholar
  993. 1965 [1]
    Beatty, M. L.: Some static and dynamic implications of the general theory of elastic stability. Arch. Rational Mech. Anal. 19, 167–188. (68b, 88, 89) 1965Google Scholar
  994. 1965 [2]
    Bowen, R.: The thermodynamics and mechanics of diffusion. Arch. Rational Mech. Anal. (in preparation). (130) 1965Google Scholar
  995. 1965 [3]
    Bragg, L.: On relativistic worldlines and motions, and on non-sentient response. Arch. Rational Mech. Anal. 18, 127 166. (5) 1965Google Scholar
  996. 1965 [4]
    Brauer, R.: On the relation between the orthogonal group and the unimodular group. Arch. Rational Mech. Anal. 18, 97–99. (33) 1965Google Scholar
  997. 1965 [5]
    Carlson, D. E., and R. T. Shield: Second and higher order effects in a class of problems in plane finite elasticity. Arch. Rational Mech. Anal. 19, 180–214. (67) [5A] CHEN, P. J.: Acceleration waves in rheological materials. Thesis, Univ. Washington. (961) 1965Google Scholar
  998. 1965 [6]
    Coleman, B. D.: Simple liquid crystals. Arch. Rational Mech. Anal. 20, in press. (33 b) 1965Google Scholar
  999. 1965 [7]
    Coleman, B. D., R. J. Duffin, and V. J. Mizel: Instability, uniqueness, and nonexistence theorems for the equation ut=uxx¡ª 9, ix on a strip. Arch. Rational Mech. Anal. 19, 100–116. (123) 1965Google Scholar
  1000. 1965 [8]
    Coleman, B. D., M. E. Gurtin, and I. Herrera: Waves in materials with memory. I. The velocity of one-dimensional shock and acceleration waves. Arch. Rational Mech. Anal. 19, 1–19. Reprinted in Wave Propagation in Dissipative Materials. Berlin-Heidelberg-New York: Springer. (961) 1965Google Scholar
  1001. 1965 [9]
    Coleman, B. D., and M. E. Gurtin: Waves in materials with memory. II. On the growth and decay of one-dimensional acceleration waves. Arch. Rational. Mech. Anal. 19, 239–265. Reprinted in Wave Propagation in Dissipative Materials. Berlin-Heidelberg-New York: Springer. (961) 1965Google Scholar
  1002. 1965 [10]
    Coleman, B. D., and M. E. Gurtin: Waves in materials with memory. III. Thermodynamic influences in the growth and decay of acceleration waves. Arch. Rational Mech. Anal. 19, 266–298. Reprinted in Wave Propagation in Dissipative Materials. Berlin-Heidelberg-New York: Springer. (96 t) 1965Google Scholar
  1003. 1965 [11]
    Coleman, B. D., and M. E. Gurtin: Waves in materials with memory. IV. Thermodynamics and the velocity of three-dimensional acceleration waves. Arch.Rational Mech. Anal. 19, 317–338. Reprinted in Wave Propagation in Dissipative Materials. Berlin-Heidelberg-New York: Springer. (96t) 1965Google Scholar
  1004. 1965 [12]
    Coleman, B. D., H. Markovitz, and W. Noll: Viscometry of Simple Fluids. Springer Tracts in Natural Philosophy. (104, 116) 1965Google Scholar
  1005. 1965 [13]
    Coleman, B. D., and V. J. Mizel: Breakdown of laminar shearing flows for second-order fluids in channels of critical width. (123) 1965Google Scholar
  1006. 1965 [14]
    Coleman, B. D., and C. Truesdell: Homogeneous motions of incompressible materials. Z. angew. Math. Mech. (in press). (29, 30) 1965Google Scholar
  1007. 1965 [15]
    Dill, E. H.: Review of Ziegler [1963, 89]. Physics Today 18, 95–96. (19A, 96) 1965Google Scholar
  1008. 1965 [16]
    Dixon, R. C., and A. C. Eringen: A dynamical theory of polar elastic dielectrics, I and II. Intl. J. Engr. Sci. 3, 359–398. (97) 1965Google Scholar
  1009. 1965 [17]
    Ericksen, J. L.: Non-existence theorems in linearized elastostatics. J. Diff. Eqns. (in press). (68) 1965Google Scholar
  1010. 1965 [18]
    Green, A. E., and P. M. Naghdi: A general theory of an elastic-plastic continuum. Arch. Rational Mech. Anal. 18, 251–281. (5) 1965Google Scholar
  1011. 1965 [18A]
    Green, A. E., P. M. Naghdi, and R. S. Rivlin: Directors and multipolar displacements in continuum mechanics. Intl. J. Engr. Sci. 2, 611–620. (98) 1965Google Scholar
  1012. 1965 [18B]
    Green, A. E., and R. S. Rjvlin: Multipolar continuum mechanics: functional theory I. Proc. R. Soc. London A 284, 303–324. (98) 1965Google Scholar
  1013. 1965 [19]
    Green, W. A.: The growth of plane discontinuities propagating into a homogeneously deformed elastic material. Arch. Rational Mech. Anal. 19, 20–23. (74) 1965Google Scholar
  1014. 1965 [20]
    Gurtin, M.: Thermodynamics and the possibility of long-range interaction in rigid heat conductors. Arch. Rational Mech. Anal. 18, 335–342. (28, 96) 1965Google Scholar
  1015. 1965 [21]
    Gujtin, M.: Thermodynamics and the possibility of spatial interaction in elastic materials. Arch. Rational. Mech. Anal. (in press). (28) 1965Google Scholar
  1016. 1965 [22]
    Knowles, J. K., and M. T. Jakub: Finite dynamic deformations of an incompressible elastic medium containing a spherical cavity. Arch. Rational Mech. Anal. 18, 376–387. (62) 1965Google Scholar
  1017. 1965 [23]
    Kröner, E.: Das physikalische Problem der antisymmetrischen Spannungen and der sogenannten Momentenspannungen. Proc. 11th Intl. Congr. Appl. Mech. (München, 1964). (44, 98) 1965Google Scholar
  1018. 1965 [24]
    Lianis, G.: Integral constitutive equations of nonlinear thermo-visco-elasticity. Purdue Univ. Rep. A. and E. S. 65–1. January. (96b) 1965Google Scholar
  1019. 1965 [25]
    Markovitz, H.: Normal stress measurements on polymer solutions. Proc. 4th Intl. Congr. Rheology 1963, 1, 189–212. (104, 113, 115, 116, 119) 1965Google Scholar
  1020. 1965 [26]
    Noll, W.: Proof of the maximality of the orthogonal group in the unimodular group. Arch. Rational Mech. Anal. 18, 100–102. (33) 1965Google Scholar
  1021. 1965 [27]
    Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch. Rational Mech. Anal. (in preparation). (34, 44) 1965Google Scholar
  1022. 1965 [28]
    Noll, W.: Representations of certain isotropic tensor functions. (in preparation) (11, 13) 1965Google Scholar
  1023. 1965 [29]
    Oldroyd, J. G.: Some steady flows of the general elastico-viscous liquid. Proc. Roy. Soc. Lond. A 283, 115–133. (119) 1965Google Scholar
  1024. 1965 [30]
    Pipkin, A. C.: Shock structure in a visco-elastic fluid. Q. Appl. Math. (in press) (96 t) 1965Google Scholar
  1025. 1965 [30 A]
    Rivlin, R. S.: Viscoelastic fluids. Research Frontiers in Fluid Dynamics. New York: Interscience. (in press) (104, 121) 1965Google Scholar
  1026. 1965 [31]
    Sedov, L. I.: Some problems of designing new models of continuous media. Proc. 11th Intl. Congr. Applied Mech. (München 1964). (97) 1965Google Scholar
  1027. 1965 [32]
    Smith, G. E.: On isotropic integrity bases. Arch. Rational Mech. Anal. 18, 282–292. (12) 1965Google Scholar
  1028. 1965 [33]
    Spencer, J. A. M.: Isotropic integrity bases for vectors and second-order tensors. Part II. Arch. Rational Mech. Anal. 18, 51–82. (12) 1965Google Scholar
  1029. 1965 [34]
    Thurston, R. N.: Effective elastic coefficients for wave propagation in crystals under stress. J. Acoust. Soc. Am. 37, 348–356, 1147. (45, 71) 1965Google Scholar
  1030. 1965 [35]
    Truesdell, C.: Rational mechanics of deformation and flow (Bingham Medal Address). Proc. 4th Intl. Congr. Rheol. 1963, 2, 3–50. (116)Google Scholar
  1031. 1965 [36]
    Truesdell, C.: Instabilities of perfectly elastic materials in simple shear. Proc. 11th Intl. Congr. Appl. Mech. (München 1964), (in press). (54, 74, 92)Google Scholar
  1032. 1965 [37]
    Truesdell, C.: Fluids of the second grade regarded as fluids of convected elasticity. Appendix by C.-C. WANG. Phys. of Fluids (in press). (119, 123) 1965Google Scholar
  1033. 1965 [38]
    Varley, E.: Acceleration waves in viscoelastic materials. Arch. Rational Mech. Anal. 19, 215–225. (961) 1965Google Scholar
  1034. 1965 [39]
    Varley, E., and J. Dunwoody: The effect of non-linearity at an acceleration wave. J. Mech. Phys. Solids 13, 17–28. (102) 1965Google Scholar
  1035. 1965 [40]
    Wang, C.-C.: Stress relaxation and the principle of fading memory. Arch. Rational Mech. Anal. 18, 117–126. (38, 40) 1965Google Scholar
  1036. 1965 [41]
    Wang, C.-C.: The principle of fading memory. Arch. Rational. Mech. Anal. 18, 343–366. (38, 40) Handbuch der Physik, Bd. II1/3. 371965Google Scholar
  1037. 1965 [42]
    Wang, C.-C.: A general theory of subfluids. Arch. Rational Mech. Anal. 20, 1–40. (33b, 50, 85b, 118b) 1965Google Scholar
  1038. 1965 [43]
    Wang, C.-C.: On the radial oscillations of a spherical thin shell in the finite elasticity theory. Q. Appl. Math. (in press). (62) 1965Google Scholar
  1039. 1965 [44]
    Wang, C.-C.: Second-order change of volume in isotropic materials free from applied loads. Z. angew. Math. Mech. (in press). (66, 93) Addendum. The following additional papers bear on the subject of the treatise. The italic numbers in parentheses indicate the sections in which reference to the paper would have been made, had we seen it in time. 1965Google Scholar
  1040. 1963 A.
    A NovozHlLov, V. V.: The connection between stress and deformation in non-linearly elastic media [in Russian]. Priklad. Mat. Mekh. 15, 184–194. (47, 85) 1963Google Scholar
  1041. 1963 A.
    Rathna, S. L., and P. L. Bhatnagar: Weissenberg and Merrington effects in nonNewtonian fluids. J. Indian Inst. Sci. Bangalore 45, 57–82. (123) 1963Google Scholar
  1042. 1964 A.
    Duvaut, G.: Lois de comportements pour un milieu isotrope materiellement polarisé de degré 2. C. R. Acad. Sci. Paris 259, 3178–3179. (98) 1964Google Scholar
  1043. 1964 B.
    Finzi, L.: Sulle equazioni costitutive nella meccanica dei continui. Ist. Lombardo Rend. Sci. A 97 (1963), 644–649. (26) 1964Google Scholar
  1044. 1964 C.
    Grioli, G.: Sulla meccanica dei continui a trasformazioni reversibili con caratteristiche di tensione asimmetriche. Sem. Ist. Naz. Alta Mat. 1962–3, 535–555. (98) 1964Google Scholar
  1045. 1964 D.
    Mindlin, R. D.: On the equations of elastic materials with micro-structure. Columbia Univ. Dept. Civil Engr. Rep. No. 51, June. (98) 1964Google Scholar
  1046. 1964 E.
    Mindlin, R. D.: Stress functions for a Cosserat continuum. Columbia Univ. Dept. Civil Engr. Rep. No. 53, September. (98) 1964Google Scholar
  1047. 1964 F.
    Tanner, R. I.: Observations on the use of Oldroyd-type equations of state for viscoelastic liquids. Chem. Engr. Sci. 19, 349–355. (119) 1964Google Scholar
  1048. 1965 A.
    Bland, D. R.: On shock structure in a solid. J. Inst. Maths Applies 1, 56–75. (74) 1965Google Scholar
  1049. 1965 B.
    Bleustein, J. L.: Effects of micro-structure on the stress concentration at a spherical cavity. Columbia Univ. Dept. Civil Engr. Rep. No. 54, February. (98) 1965Google Scholar
  1050. 1965 C.
    Bogardus, E. H.: Third-order elastic constants of Ge, MgO, and fused SiO2. J. Applied Phys. 36, 2504–2513. (63) 1965Google Scholar
  1051. 1965 D.
    Brown, W. F.: Basis of a rigorous theory of magnetostriction. Proc. Intl. Conf. Magnetism (Nottingham, 1964). (97) 1965Google Scholar
  1052. 1965 E.
    Brown, W. F.: Theory of magnetoelastic effects in ferromagnetism. J. Applied Phys. 36, 994–1000. (97) 1965Google Scholar
  1053. 1965 F.
    Coleman, B. D., and M. E. Gurtin: Thermodynamics and one-dimensional shock waves in materials with memory. Submitted for publication. (71, 96t) 1965Google Scholar
  1054. 1965 G.
    Coleman, B. D., and V. J. Mizel: On the existence of a caloric equation of state. Proc. 4th Intl. Congr. Rheol. 1963, 3, 34–36. (96) 1965Google Scholar
  1055. 1965 H.
    Davison, L. W.: Propagation of finite amplitude waves in elastic solids, Thesis, Calif. Inst. Tech. (71, 74) 1965Google Scholar
  1056. 1965 I.
    Eringen, A. C., and J. D. Ingram: A continuum theory of chemically reacting media. Intl. J. Engr. Sci. 3, 197–212. (130) 1965Google Scholar
  1057. 1965 J.
    Eshel, N. N.: Effects of strain-gradient on stress-concentration at a cylindrical hole in an elastic solid. Columbia Univ. Dept. Civil Engr. Rep. No. 2, June. (98) 1965Google Scholar
  1058. 1965 K.
    Giesekus, H.: Some secondary flow phenomena in general visco-elastic fluids. Proc. 4th Intl. Congr. Rheol. 1963, 1, 249–266. (123) 1965Google Scholar
  1059. 1965 L.
    Giesekus, H.: Sekundärströmungen in viskoelastischen Flüssigkeiten bei stationärer and periodischer Bewegung. Rheol. Acta 4, 85–101. (122, 123) 1965Google Scholar
  1060. 1965 M.
    Ginn, R. F., and A. B. Metzner: Normal stresses in polymeric solutions. Proc. 4th Intl. Congr. Rheol. 1963, 2, 583–602. (116) 1965Google Scholar
  1061. 1965 N.
    Green, A. E.: A note on linear transversely isotropic fluids. Mathematika 12, 27–29. (126) 1965Google Scholar
  1062. 1965 O.
    Green, A. E., and P. M. Naghdi: Plasticity theory and multipolar continuum mechanics. Mathematika 12, 21–26. (5, 98) 1965Google Scholar
  1063. 1965 P.
    Hayes, J. W., and R. I. Tanner: Measurements of the second normal stress dif- ference in polymer solutions. Proc. 4th Intl. Congr. Rheol. 1963, 3, 389–399. (112) 1965Google Scholar
  1064. 1965 Q.
    John, F.: Estimates for the derivatives of the stresses in a thin shell and interior shell equations. Comm. Pure Appl. Math. 18, 235–267. (94) 1965Google Scholar
  1065. 1965 R.
    Lianis, G.: Small deformation superposed on an initial large deformation in viscoelastic bodies. Proc. 4th Intl. Congr. Rheol. 1963, 2, 109–119. (41)Google Scholar
  1066. 1965 S.
    Lockett, F. J.: Creep and stress-relaxation experiments for non-linear materials. Intl. J. Engr. Sci. 3, 59–75. (41) 1965CrossRefGoogle Scholar
  1067. 1965 T.
    Markovitz, H., and B. D. Coleman: Nonsteady helical flow of second-order fluids. Proc. 4th Intl. Congr. Rheol. 1963, 2, 143–145. (123) 1965Google Scholar
  1068. 1965 U.
    Miller, C. E., and W. H. Hoppman II: Velocity field induced in a liquid by a rotating cone. Proc. 4th Intl. Congr. Rheol. 1963, 2, 619–636. (123) 1965Google Scholar
  1069. 1965 V.
    Mindlin, R. D.: Second gradient of strain and surface-tension in linear elasticity. Columbia Univ. Dept. Civil Engr. Rep. No. 1, March. (98) 1965Google Scholar
  1070. 1965 W.
    Morgan, A. J. A.: On the construction of constitutive equations for continuous media. Arch. Mech. Stosow. 17, 145–174. (26) 1965Google Scholar
  1071. 1965 X.
    Narasimhan, M. N. L.: Stability of flow of a non-Newtonian liquid between two rotating cylinders in the presence of a circular magnetic field. Proc. 4th Intl. Congr. Rheol. 1963, 1, 345–363. (119) 1965Google Scholar
  1072. 1965 Y.
    Pipkin, A. C.: Some non-Newtonian effects in flow through tubes. Proc. 4th Intl. Congr. Rheol. 1963, 1, 213–222. (122) 1965Google Scholar
  1073. 1965 Z.
    Pipkin, A. C., and R. S. Rivlin: Mechanics of rate-independent materials. Z. angew. Math. Phys. 16, 313–326. (5) 1965MathSciNetCrossRefGoogle Scholar
  1074. 1965 AA.
    Pipkin, A. C., and M. Singh: Controllable states of elastic dielectrics. Arch. Rational Mech. Anal., in press. (91, 97) 1965Google Scholar
  1075. 1965 BB.
    Ramakanth, J.: Some problems of propagation of waves in prestressed isotropic bodies. Proc. Vibration Probl. 6, 161–172. (73) 1965MATHGoogle Scholar
  1076. 1965 CC.
    Reiner, M.: Second-order stresses in the flow of gases. Proc. 4th Intl. Congr. Rheol. 1963, 1, 267–279. (116)Google Scholar
  1077. 1965 DD.
    Reiner, M.: Research on second order effects in the elastic response of metals. Technion Found. Report. (70) 1965Google Scholar
  1078. 1965 EE.
    Rivlin, R. S.: Nonlinear viscoelastic solids. SIAM Review 7, 323–340. (28, 37) 1965MathSciNetCrossRefGoogle Scholar
  1079. 1965 FF.
    Sewell, M. J.: On the calculation of potential functions defined on curved boundaries. Proc. R. Soc. London A 286, 402–411. (88) 1965MathSciNetADSMATHCrossRefGoogle Scholar
  1080. 1965 GG.
    Shertzer, C. R., and A. R. Metzner: Measurement of normal stresses in viscoelastic materials at high shear rates. Proc. 4th Intl. Congr. Rheol. 1963, 2, 603–618. (113)Google Scholar
  1081. 1965 HH.
    Varley, E.: Simple waves in general elastic materials. Arch. Rational Mech. Anal., in press. (74) 1965Google Scholar
  1082. 1965 II.
    Wang, C.-C.: A representation theorem for the constitutive equation of a simple material in motions with constant stretch history. Arch. Rational Mech. Anal., in press. (109) 1965Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • C. Truesdell
  • W. Noll

There are no affiliations available

Personalised recommendations